• 제목/요약/키워드: culturable bacteria

검색결과 78건 처리시간 0.054초

Composition and Diversity of Gut Bacteria Associated with the Eri Silk Moth, Samia ricini, (Lepidoptera: Saturniidae) as Revealed by Culture-Dependent and Metagenomics Analysis

  • MsangoSoko, Kondwani;Gandotra, Sakshi;Chandel, Rahul Kumar;Sharma, Kirti;Ramakrishinan, Balasubramanian;Subramanian, Sabtharishi
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권9호
    • /
    • pp.1367-1378
    • /
    • 2020
  • The polyphagous eri silk moth, Samia ricini, is associated with various symbiotic gut bacteria believed to provide several benefits to the host. The larvae of S. ricini were subjected to isolation of gut bacteria using culture-dependent 16S rRNA generic characterization, metagenomics analysis and qualitative enzymatic assays. Sixty culturable aerobic gut bacterial isolates comprising Firmicutes (54%) and Proteobacteria (46%); and twelve culturable facultative anaerobic bacteria comprising Proteobacteria (92%) and Firmicutes (8%) were identified inhabiting the gut of S. ricini. The results of metagenomics analysis revealed the presence of a diverse community of both culturable and un-culturable gut bacteria belonging to Proteobacteria (60%) and Firmicutes (20%) associated with seven orders. An analysis of the results of culturable isolation indicates that these bacterial isolates inhabited all the three compartments of the gut. Investigation on persistence of bacteria coupled with metagenomics analysis of the fifth instar suggested that bacteria persist in the gut across the different instar stages. In addition, enzymatic assays indicated that 48 and 75% of culturable aerobic, and 75% of anaerobic gut bacterial isolates had cellulolytic, lipolytic and nitrate reductase activities, thus suggesting that they may be involved in food digestion and nutritional provision to the host. These bacterial isolates may be good sources for profiling novel genes and biomolecules for biotechnological application.

인천지역 대기 환경 중 배양성 세균의 특성 (Characterization of Culturable Bacteria in the Atmospheric Environment in Incheon, Korea)

  • 이시원;박수정;김지혜;민병대;정현미;박상정
    • 한국환경보건학회지
    • /
    • 제42권2호
    • /
    • pp.126-132
    • /
    • 2016
  • Objectives: This study aims to provide basic data regarding the bacterial total plate count in the atmospheric environment for related studies. Methods: Total plate count and the identification of culturable bacteria in the atmospheric environment in Incheon took place in 2015 using periodic survey. Correlationship analysis was performed between the number of culturable bacteria and environmental elements. In addition, an estimation of novel bacterial species was undertaken using the similarities and phylogenetic tree based on the 16S rRNA gene. Results: The total plate count of culturable bacteria was on average $176CFU/m^3$, and did not exceed $610CFU/m^3$ in the atmospheric environment. Periodic monthly measuring of total plate count was highest in June at $293CFU/m^3$, while the lowest was in July at $125CFU/m^3$. Furthermore, as a result of the identification of culturable bacteria, the genera Arthrobacter and Kocuria were dominant, while novel bacterial taxa that belong to the genera Chryseobacterium and Herbiconiux were separated. Conclusion: The total number of culturable bacteria from the atmospheric environment in Korea is on average $176CFU/m^3$. In addition, the genera Arthrobacter and Kocuria dominate. The presence of novel bacterial taxa are expected in the atmospheric environment, such as belonging to the genera Chryseobacterium and Herbiconiux.

Metagenome, the Untapped Microbial Genome, toward Discovery of Novel Microbial Resources and Application into the Plant Pathology

  • Lee, Seon-Woo
    • The Plant Pathology Journal
    • /
    • 제21권2호
    • /
    • pp.93-98
    • /
    • 2005
  • Molecular ecological studies of microbial communities revealed that only tiny fraction of total microorganisms in nature have been identified and characterized, because the majority of them have not been cultivated. A concept, metagenome, represents the total microbial genome in natural ecosystem consisting of genomes from both culturable microorganisms and viable but non-culturable bacteria. The construction and screening of metagenomic libraries in culturable bacteria constitute a valuable resource for obtaining novel microbial genes and products. Several novel enzymes and antibiotics have been identified from the metagenomic approaches in many different microbial communities. Phenotypic analysis of the introduced unknown genes in culturable bacteria could be an important way for functional genomics of unculturable bacteria. However, estimation of the number of clones required to uncover the microbial diversity from various environments has been almost impossible due to the enormous microbial diversity and various microbial population structure. Massive construction of metagenomic libraries and development of high throughput screening technology should be necessary to obtain valuable microbial resources. This paper presents the recent progress in metagenomic studies including our results and potential of metagenomics in plant pathology and agriculture.

비활성화 세포, Persister 세포와 VBNC(Viable but Non-Culturable Cells)의 이해 (Understanding Dormant Cells: Persister Cells and Viable but Non-Culturable Cells)

  • 김혜인;송수연
    • Journal of Dairy Science and Biotechnology
    • /
    • 제41권4호
    • /
    • pp.157-162
    • /
    • 2023
  • In the field of microbiology, numerous types of bacteria live dormant to survive stresses such as pasteurization and antibiotics. Some bacteria become 'persisters' by inactivating their ribosomes, allowing them to 'sleep' through stress and revive when the stress has been removed. Under stress, some cells morph into hollow, lifeless structures known as 'cell shells.' In microbiology, these cells have been confused with viable cells in the 'viable but non-culturable cells' phenomenon. Therefore, this review addressed the concept that when revival occurs, the always-viable persister cells revive, instead of the dead cell husks.

형광현미경을 이용한 음용 지하수내 배양불능 세균의 관찰 및 정량적 평가 (The Observation and a Quantitative Evaluation of Viable but Non-Culturable Bacteria in Potable Groundwater Using Epifluorescence Microscopy)

  • 김인기;;황경숙
    • 미생물학회지
    • /
    • 제38권3호
    • /
    • pp.180-185
    • /
    • 2002
  • 직접생균수측정법(direct viable count; DVC)과 평판법(p1ate count; PC)을 이용하여 시판되고 있는 먹는샘물, 약수, 도시 인근 지역과 축산농가 밀집지역의 음용 지하수로부터 채수된 시료에 대하여 정략적 평가를 실시하였다. DVC법에 의한 생균수는 전균수(total direct count: TDC)의 약 30~80%, 평판법에 의한 생균수는 DVC의 약1~30%로 나타났다. 이와 같은 결과는 지하수내에 배양 불가능한(viable but non-culturable: VBNC)세균이 높은 비율로 존재함이라고 판단된다. 한편, 통상농도의 영양배지(nutrient broth; NB)와 이를 $10^-2 -2/배로 희석한 영양배지(diluted nutrient broth; DNB)및 R2A배지를 이용하여 계수한 결과, 통상농도의 NB배지에 비해 저영양배지인 DNB와 R2A에서 2~50배 이상 높은 계수치를 나타내었다. 이와 같은 결과로부터 지하수와 같이 빈영양한 환경 내에는 통상농도의 NB배지에서는 중식이 현저히 저해되고 저영양배지에서 중식 가능한 저영양세균이 다수 분포해 있음이라 판단되었다.

다중이용시설의 실내공기 중 총부유세균 농도와 종류 (Concentrations of total culturable microorganisms and Its Identification in Public Facilities)

  • 전병학;황인영
    • 한국산학기술학회논문지
    • /
    • 제16권1호
    • /
    • pp.868-876
    • /
    • 2015
  • 실내 공기 중 부유세균은 실내공기오염을 유발하고 재실자의 건강상 위해를 초래할 수 있다. 본 연구는 다중이용시설을 대상으로 주요목적으로 사용되는 실내에서 부유세균의 농도와 세균의 종류를 동정하고 실내공기오염물질 중 부유세균에 대한 기초정보 제공을 목적으로 한다. 노인시설 7개소 (노인요양시설, 노인전문병원, 복지관 포함), 대규모점포 4개소, 대학병원 4개소, 어린이집 7개소 (유치원, 어린이집, 보육원 포함), 지하역사 4개소 및 버스터미널 4개소 등 총 30개소 120개 지점에서 총부유세균의 농도를 측정 분석하고 세균의 종류를 동정하였다. 모든 시설군에서 측정된 실내 부유세균의 농도는 유지기준 $800CFU/m^3$이하 이었으나, I/O비가 1.09-2.36으로 실내의 총부유세균의 농도가 실외에 비해 높았고, 어린이집, 대학병원, 노인시설에서 동정된 세균의 종류별 높은 검출빈도 보였다. 국내 다중이용시설의 주요목적에 따른 실내 부유세균에 대한 지속적 관찰이 필요하며, 특히 어린이집, 대학병원, 노인시설 등에 대한 관심이 요구되고, 추후 배양 가능한 세균 뿐 아니라 알레르겐 등을 포함한 미생물학적 실내오염물질에 대한 추가 연구가 필요할 것으로 사료된다.

난배양성(viable but non-culturable; VBNC) Edwardsiella piscicida의 특성 연구 (Characterization of viable but non-culturable (VBNC) Edwardsiella piscicida)

  • 김아현;이윤항;노형진;허영웅;김남은;김도형
    • 한국어병학회지
    • /
    • 제37권1호
    • /
    • pp.49-60
    • /
    • 2024
  • A viable but non-culturable (VBNC) state is a survival strategy adopted by bacteria when faced with unfavorable environmental conditions, rendering them unable to grow on nutrient agar while maintaining low metabolic activity. This study explored the impact of temperature and nutrient availability on inducing VBNC state in Edwardsiella piscicida, the most important bacterial fish pathogen, and assessed its pathogenicity at VBNC state. E. piscicida was suspended in filtered sterile seawater and exposed to three different temperatures (4, 10, and 25℃) to induce the VBNC state. Subsequently, the induced VBNC cells were subjected to resuscitation by either raising the temperature to 28℃ or inoculating them in brain heart infusion broth supplemented with 1% NaCl. A propidium monoazide (PMA)-qPCR method was also developed to selectively quantify live (VBNC or culturable) E. piscicida cells. The results showed that the bacteria entered the VBNC state after approximately 1 month at 4℃ and 25℃, and 2 months at 10℃. The VBNC E. piscicida cells were successfully revived within 3 days in a nutrient-rich environment at 28℃, highlighting the significance of temperature and nutrition in inducing and resuscitating the VBNC state. In pathogenicity tests, resuscitated E. piscicida cells exhibited high pathogenicity in olive flounder comparable to cultured bacteria, while VBNC cells showed no signs of infection, suggesting they are unlikely to resuscitate in fish. In conclusion, this study contributes to our understanding of fish pathogen ecology by investigating the characteristics of the VBNC state under varying temperature and nutrition conditions.

Diversity of Culturable Bacteria Associated with Hard Coral from the Antarctic Ross Sea

  • Kim, Min Ju;Park, Ha Ju;Youn, Ui Joung;Yim, Joung Han;Han, Se Jong
    • 한국해양생명과학회지
    • /
    • 제4권1호
    • /
    • pp.22-28
    • /
    • 2019
  • The bacterial diversity of an Antarctic hard coral, Errina fissurata, was examined by isolating bacterial colonies from crushed coral tissue and by sequencing their 16S rRNA gene. From the analyzed results, the bacteria were classified as Actinobacteria (56%), Firmicutes (35%) and Proteobacteria (9%). The thirty-four isolates were cultured in liquid media at different temperatures and their growth was assessed over time. The majority of the isolates displayed their highest growth rate at 25℃ during the first three days of cultivation, even though the coral was from a cold environment. Nevertheless, strains showing their highest growth rate at low temperatures (15℃ and 4℃) were also found. This study reports the composition of an Antarctic hard coral-associated culturable bacterial community and their growth behavior at different temperatures.

Assessment of indoor air micro-flora in selected schools

  • Katiyar, Vinita
    • Advances in environmental research
    • /
    • 제2권1호
    • /
    • pp.61-80
    • /
    • 2013
  • Quantification of viable forms of microbial community (bacteria and fungi) using culture-dependent methods was done in order to characterize the indoor air quality (IAQ). Role of those factors, which may influence the concentration of viable counts of bacteria and fungi, like ventilation, occupancy, outdoor concentration and environmental parameters (temperature and relative humidity) were also determined. Volumetric-infiltration sampling technique was employed to collect air samples both inside and outside the schools. As regard of measurements of airborne viable culturable microflora of schools during one academic year, the level of TVMCs in school buildings was ranged between 803-5368 cfu/$m^3$. Viable counts of bacteria (VBCs) were constituted 63.7% of the mean total viable microbial counts where as viable counts of fungi (VFCs) formed 36.3% of the total. Mean a total viable microbial count (TVMCs) in three schools was 2491 cfu/$m^3$. Outdoor level of TVMCs was varied from 736-5855 cfu/$m^3$. Maximum and minimum VBCs were 3678-286 cfu/m3 respectively. Culturable fungal counts were ranged from 268-2089 cfu/$m^3$ in three schools. Significant positive correlation (p < 0.01) was indicated that indoor concentration of viable community reliant upon outdoor concentration. Temperature seemed to have a large effect (p < 0.05, p < 0.01) on the concentration of viable culturable microbial community rather than relative humidity. Consistent with the analysis and findings, the concentration of viable cultural counts of bacteria and fungi found indoors, were of several orders of magnitude, depending upon the potential of local, spatial and temporal factors, IO ratio appeared as a crucial indicator to identify the source of microbial contaminants.