DOI QR코드

DOI QR Code

Diversity of Culturable Bacteria Associated with Hard Coral from the Antarctic Ross Sea

  • Kim, Min Ju (Division of Polar Life Sciences, Korea Polar Research Institute) ;
  • Park, Ha Ju (Division of Polar Life Sciences, Korea Polar Research Institute) ;
  • Youn, Ui Joung (Division of Polar Life Sciences, Korea Polar Research Institute) ;
  • Yim, Joung Han (Division of Polar Life Sciences, Korea Polar Research Institute) ;
  • Han, Se Jong (Division of Polar Life Sciences, Korea Polar Research Institute)
  • Received : 2019.05.14
  • Accepted : 2019.06.11
  • Published : 2019.06.17

Abstract

The bacterial diversity of an Antarctic hard coral, Errina fissurata, was examined by isolating bacterial colonies from crushed coral tissue and by sequencing their 16S rRNA gene. From the analyzed results, the bacteria were classified as Actinobacteria (56%), Firmicutes (35%) and Proteobacteria (9%). The thirty-four isolates were cultured in liquid media at different temperatures and their growth was assessed over time. The majority of the isolates displayed their highest growth rate at 25℃ during the first three days of cultivation, even though the coral was from a cold environment. Nevertheless, strains showing their highest growth rate at low temperatures (15℃ and 4℃) were also found. This study reports the composition of an Antarctic hard coral-associated culturable bacterial community and their growth behavior at different temperatures.

Keywords

Acknowledgement

This study was supported by the Korea Polar Research Institute (no. PE17100).

References

  1. Antony R, Krishnan KP, Laluraj CM, Thamban M, Dhakephalkar PK, Engineer AS, Shivaji S. 2012. Diversity and physiology of culturable bacteria associated with a coastal Antarctic ice core. Microbiol Res 167: 372-380. https://doi.org/10.1016/j.micres.2012.03.003
  2. Baek K, Choi A, Kang I, Lee K, Cho JC. 2013. Kordia antarctica sp. nov., isolated from Antarctic seawater. Int J Syst Evol Microbiol 63: 3617-3622. https://doi.org/10.1099/ijs.0.052738-0
  3. Berney M, Weilenmann HU, Ihssen J, Bassin C, Egli T. 2006. Specific growth rate determines the sensitivity of Escherichia coli to thermal, UVA, and solar disinfection. Appl Environ Microbiol 72: 2586-2593. https://doi.org/10.1128/AEM.72.4.2586-2593.2006
  4. Cheal AJ, Macneil MA, Emslie MJ, Sweatman H. 2017. The threat to coral reefs from more intense cyclones under climate change. Global Change Biology 23: 1511-1524. https://doi.org/10.1111/gcb.13593
  5. Chown SL, Clarke A, Fraser CI, Cary SC, Moon KL, Mcgeoch MA. 2015. The changing form of Antarctic biodiversity. Nature 522: 431-438. https://doi.org/10.1038/nature14505
  6. Ciesielski S, Gorniak D, Mozejko J, Swiatecki A, Grzesiak J, Zdanowski M. 2014. The diversity of bacteria isolated from antarctic freshwater reservoirs possessing the ability to produce polyhydroxyalkanoates. Curr Microbiol 69: 594-603. https://doi.org/10.1007/s00284-014-0629-1
  7. Clarke A, Johnston NM. 2003. Antarctic marine benthic diversity. Oceanogr Mar Biol: an Annual Review 41: 47-114.
  8. De Broyer C, Clarke A, Koubbi P, Pakhomov E, Scott F, Vanden Berghe E, Danis B. (Eds.) (2019). Register of Antarctic Marine Species. Accessed at http://www.marinespecies.org/rams on 2019-01-21.
  9. Forest R, Victor S, Farooq A, Nancy K. 2002. Diversity and distribution of coral-associated bacteria. Mar Ecol Prog Ser 243: 1-10. https://doi.org/10.3354/meps243001
  10. Janosik AM, Halanych KM. 2010. Unrecognized Antarctic biodiversity: a case study of the genus Odontaster (Odontasteridae; Asteroidea). Integr Comp Biol 50: 981-992. https://doi.org/10.1093/icb/icq119
  11. Khaneja R, Perez-Fons L, Fakhry S, Baccigalupi L, Steiger S, To E, Sandmann G, Dong TC, Ricca E, Fraser PD, Cutting SM. 2010. Carotenoids found in Bacillus. J Appl Microbiol 108: 1889-1902.
  12. Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111-120. https://doi.org/10.1007/BF01731581
  13. Koren O, Rosenberg E. 2006. Bacteria associated with mucus and tissues of the coral Oculina patagonica in summer and winter. Appl Environ Microbiol 72: 5254-5259. https://doi.org/10.1128/AEM.00554-06
  14. Lane DJ. 1991. 16S/23S rRNA sequencing. In E. Stackebrandt and M. Goodfellow (ed.), Nucleic acid techniques in bacterial systematics. John Wiley & Sons, New York, pp 115-175.
  15. Nedwell DB. 1999. Effect of low temperature on microbial growth: lowered affinity for substrates limits growth at low temperature. FEMS Microbiol Ecol 30: 101-111. https://doi.org/10.1111/j.1574-6941.1999.tb00639.x
  16. Ratkowsky DA, Olley J, Mc Meekin TA, Ball A. 1982. Relationship between temperature and growth rate of bacterial cultures. J Bacteriol 149: 1-5. https://doi.org/10.1128/jb.149.1.1-5.1982
  17. Rohwer F, Breitbart M, Jara J, Azam F, Knowlton N. 2001. Diversity of bacteria associated with the Caribbean coral Montastraea franksi. Coral reefs 20: 85-91. https://doi.org/10.1007/s003380100138
  18. Romanovaskaia VA, Tashirev AB, Gladka GB, Tashireva AA. 2012. Temperature range for growth of the Antarctic microorganisms. Mikrobiol Z 74: 13-9.
  19. Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406-425.
  20. Small AM, Adey WH, Spoon D. 1998. Are current estimates of coral reef biodiversity too low? The view through the window of a microcosm. Atoll Research Bulletin 458: 1-20. https://doi.org/10.5479/si.00775630.458.1
  21. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 2725-2729. https://doi.org/10.1093/molbev/mst197
  22. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgin DG. 1997. The CLUSTAL X window interface: Flexible strategies for multiple sequence alignment aided by quality analysis tool. Nucleic Acids Res 24: 4876-4882.
  23. Webster NS, Bourne D. 2006. Bacterial community structure associated with the Antarctic soft coral, Alcyonium antarcticum. FEMS Microbiol Ecol 59: 81-94. https://doi.org/10.1111/j.1574-6941.2006.00195.x
  24. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J. 2017. Introducing EzBioCloud: A taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 67: 1613-1617. https://doi.org/10.1099/ijsem.0.001755
  25. Zhang YY, Ling J, Yang QS, Wang YS, Sun CC, Sun HY, Feng JB, Jiang YF, Zhang YZ, Wu ML, Dong JD. 2015. The diversity of coral associated bacteria and the environmental factors affect their community variation. Ecotoxicology 24: 1467-1477. https://doi.org/10.1007/s10646-015-1454-4
  26. Zobell CE. 1946. Marine Microbiology. A Monogram on Hydrobacteriology. Chronica Botanica Co., Waltham, 240 p.