DOI QR코드

DOI QR Code

Metagenome, the Untapped Microbial Genome, toward Discovery of Novel Microbial Resources and Application into the Plant Pathology

  • Lee, Seon-Woo (Division of Applied Biology, College of Natural Resources and Life Science, Dong-A University)
  • Published : 2005.01.01

Abstract

Molecular ecological studies of microbial communities revealed that only tiny fraction of total microorganisms in nature have been identified and characterized, because the majority of them have not been cultivated. A concept, metagenome, represents the total microbial genome in natural ecosystem consisting of genomes from both culturable microorganisms and viable but non-culturable bacteria. The construction and screening of metagenomic libraries in culturable bacteria constitute a valuable resource for obtaining novel microbial genes and products. Several novel enzymes and antibiotics have been identified from the metagenomic approaches in many different microbial communities. Phenotypic analysis of the introduced unknown genes in culturable bacteria could be an important way for functional genomics of unculturable bacteria. However, estimation of the number of clones required to uncover the microbial diversity from various environments has been almost impossible due to the enormous microbial diversity and various microbial population structure. Massive construction of metagenomic libraries and development of high throughput screening technology should be necessary to obtain valuable microbial resources. This paper presents the recent progress in metagenomic studies including our results and potential of metagenomics in plant pathology and agriculture.

Keywords

References

  1. Amann, R. I., Ludwig, W. and Schleifer, K. H. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59: 143-169
  2. Beja, O., Suzuki, M. T., Koonin, E. V., Aravind, L., Hadd, A., Nguyen, L. P., Villacorta, R., Amjadi, M., Garrigues, C., Javanovich, S. B., Feldman, R. A. and Delong, E. F. 2000. Construction and analysis of bacterial artificial chromosome libraries from a marine microbial assemblage. Environ. Microbiol. 2:516-529 https://doi.org/10.1046/j.1462-2920.2000.00133.x
  3. Berry, A. E., Chiocchini, C., Selby, T., Sosio, M. and Wellington, E. M. H. 2003. Isolation of high molecular weight DNA from soil for cloning into BAC vectors. FEMS Microbiol. Lett. 223: 15-20 https://doi.org/10.1016/S0378-1097(03)00248-9
  4. Bintrim, S. B., Donohue, T. J., Handelsman, J., Roberts, G P. and Goodman, R. M. 1997. Molecular phylogeny of archaea from soil. Proc. Natl. Acad. Sci. USA 94:277-282 https://doi.org/10.1073/pnas.94.1.277
  5. Borneman, J., Skroch, P. W., O'Sullivan, K. M., Palus, J. A., Rumjanek, N. G, Jansen, J. L., Nienhuis, J. and Triplett, E. W. 1996. Molecular microbial diversity of an agricultural soil in Wisconsin. Appl. Environ. Microbiol. 62:1935-1943
  6. Campbell, M. A., Fitzgerald, H. A. and Ronald, P. C. 2002. Engineering pathogen resistance in crop plants. Transgenic Res. 11: 599-613 https://doi.org/10.1023/A:1021109509953
  7. Corran, A. J., Renwick, A. and Dunbar, S. J. 1998. Approaches to in-vitro lead generation for fungicide invention. Pestic. Sci. 54:338-344 https://doi.org/10.1002/(SICI)1096-9063(199812)54:4<338::AID-PS824>3.0.CO;2-K
  8. da Graca, J. V. 1991. Citrus greening disease. Annu. Rev. Phytopathol. 29: 109-136 https://doi.org/10.1146/annurev.py.29.090191.000545
  9. Dunwell, J. M. 2005. Transgenic crops: the current and next generations. Methods Mol. Biol. 286:377-398
  10. Gabor, E. M., de Vries, E. J. and Janssen, D. B. 2003. Efficient recovery of environmental DNA for expression cloning by indirect extraction methods. FEMS Microbiol. Ecol. 44: 153-163 https://doi.org/10.1016/S0168-6496(02)00462-2
  11. Handelsman, J. 2004. Metagenomics: application of genomics to uncultured microorganisms. Microbiol. Mol. Biol. Rev. 68: 669-685 https://doi.org/10.1128/MMBR.68.4.669-685.2004
  12. Handelsman, J., Rondon, M. R., Brady, S. P., Clady, J. and Goodman, R. M. 1998. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem. Biol. 5:R245-249 https://doi.org/10.1016/S1074-5521(98)90108-9
  13. Hugenholtz, P. and Pace, N. R. 1996. Identifying microbial diversity in the natural environment: a molecular phylogenetic approach. Trends Biotechnol. 14: 190-197 https://doi.org/10.1016/0167-7799(96)10025-1
  14. Jaeger, K-E. and Eggert, T. 2002. Lipases for biotechnology. Curr. Opin. Biotechnol. 13:390-397 https://doi.org/10.1016/S0958-1669(02)00341-5
  15. Janssen, P. H., Yates, P. S., Grinton, B. E., Taylor, P. M. and Sait, M. 2002. Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Appl. Environ. Microbiol. 68:2391-2396 https://doi.org/10.1128/AEM.68.5.2391-2396.2002
  16. Joseph, S. J., Hugenholtz, P., Sangwan, P, Osborne, C. A. and Janssen. P. H. 2003. Laboratory cultivation of widespread and previously uncultured soil bacteria. Appl. Environ. Microbiol. 69:7210-7215 https://doi.org/10.1128/AEM.69.12.7210-7215.2003
  17. Kim, U-J., Shizuya, H., De Jong, P. J., Birren, B. and Simon, M. I. 1992. Stable propagation of cosmid-sized human DNA inserts in an F factor based vector. Nucleic Acids Res. 20: 1083-1085 https://doi.org/10.1093/nar/20.5.1083
  18. Lee, S-W, Won, K., Lim, H. K., Kim, J.-C., Choi, G. J. and Cho, K. Y. 2004. Screening for novel lipolytic enzymes from uncultured soil microorganisms. Appl. Microbiol. Biotechnol. 65: 720-726 https://doi.org/10.1007/s00253-004-1722-3
  19. Liesack, W. and Stackebrandt, E. 1992. Occurrence of novel groups of the domain Bacteria as revealed by analysis of genetic material isolated from an Australian terrestrial environment. J. Bacteriol. 174:5072-5078 https://doi.org/10.1128/jb.174.15.5072-5078.1992
  20. Liles, M. R., Manske, B. E, Bintrim, S. B., Handelsman, J. and Goodman, R. M. 2003 A census of rRNA genes and linked genomic sequences within a soil metagenomic library. Appl. Environ. Microbiol. 69:2684-2691 https://doi.org/10.1128/AEM.69.5.2684-2691.2003
  21. Lorenz, P and Schleper, C. 2002. Metagenome - a challenging source of enzyme discovery. J. Mol. Catal. B-Enzym. 1920: 13-19
  22. Lorenz, P., Liebeton, K., Niehaus, E. and Eck, J. 2002. Screening for novel enzymes for biocatalytic processes: accessing the metagenome as a resource of novel functional sequence space. Curr. Opin. Biotechnol. 13:572-577 https://doi.org/10.1016/S0958-1669(02)00345-2
  23. Pace, N. R. 1997. A molecular view of microbial diversity and the biosphere. Science 276:734-740 https://doi.org/10.1126/science.276.5313.734
  24. Pettit, R. K. 2004. Soil DNA libraries for anticancer drug discovery. Cancer Chemother. Pharmacol. 54: 1 -6 https://doi.org/10.1007/s00280-004-0771-8
  25. Piel. J. 2002. A polyketide synthase-peptide synthase gene cluster from an uncultured bacterial symbiont of Paederus beetles. Proc. Natl. Acad. Sci. USA 99: 14002-14007
  26. Quaiser, A., Ochsenreiter, T., Klenk, H-P., Kletzin, A., Treusch, A. H., Meurer, G, Eck, J., Sensen, C. W. and Schleper, G. 2002. First insight into the genome of an uncultivated crenarchaeote from soil. Environ. Microbiol. 4:603-611 https://doi.org/10.1046/j.1462-2920.2002.00345.x
  27. Rondon, M. R., August, P. R., Bettermann, A. D., Brady, S. F., Grossman, T. H., Liles, M. R., Loiacono, K. A., Lynch, B. A., MacNeil, I. A., Minor, C, Tiong, C. L., Gilman, M., Osburne, M. S., Clardy, J., Handelsman, J. and Goodman, R. M. 2000. Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl. Environ. Microbiol. 66:2541-2547 https://doi.org/10.1128/AEM.66.6.2541-2547.2000
  28. Rondon, M. R., Goodman, R. M. and Handelsman, J. 1999a. The earth's bounty: assessing and accessing soil microbial diversity. Trends Biotechnol. 17:403-409 https://doi.org/10.1016/S0167-7799(99)01352-9
  29. Rondon, M. R., Raffel, S. J., Goodman, R. M. and Handelsman, J. 1999b. Toward functional genomics in bacteria: analysis of gene expression in Escherichia coli from a bacterial artificial chromosome library of Bacillus cereus. Proc. Natl. Acad. Sci. USA 96:6451-6455
  30. Schloss, P. D. and Handelsman. J. 2003. Biotechnological prospects from metagenomics. Curr. Opin. Biotechnol. 14:303-310 https://doi.org/10.1016/S0958-1669(03)00067-3
  31. Torsvik, V., Daae, F. L., Sandaa, R-A. and Ovreas, L. 1998. Novel techniques for analyzing microbial diversity in natural and perturbed environments. J. Biotechnol. 64:53-62 https://doi.org/10.1016/S0168-1656(98)00103-5
  32. Torsvik, V., Goksoyr, J. and Daae, F. L. 1990. High diversity in DNA of soil bacteria. Appl. Environ. Microbiol. 56:782-787
  33. Torsvik, V., Ovreas, L. and Thingstad, T. F. 2002a. Prokaryotic diversity -magnitude, dynamics, and controlling factors. Science 296: 1064-1066 https://doi.org/10.1126/science.1071698
  34. Torsvik, V. and Ovreas, L. 2002b. Microbial diversity and function in soil: from genes to ecosystems. Curr. Opin. Microbiol. 5:240-245 https://doi.org/10.1016/S1369-5274(02)00324-7
  35. Wang, G-Y-S., Graziani, E., Waters, B., Pan, W., Li, X., McDermott, J., Meurer, G, Saxena, G, Anderson, R. J. and Davies, J. 2000. Novel natural products from soil DNA libraries in a streptomycete host. Org. Lett. 2:2401-2404 https://doi.org/10.1021/ol005860z
  36. Weller, D. M., Raaijmakers, J. M., McSpadden Gardener, B. B. and Thomashow, L. S. 2002. Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu. Rev. Phytopathol. 40:309-348 https://doi.org/10.1146/annurev.phyto.40.030402.110010
  37. Whitman, W. B., Coleman, D. C. and Wiebe, W. J. 1998. Prokaryotes: the unseen majority. Proc. Natl. Acad. Sci. USA 95:6578-6583 https://doi.org/10.1073/pnas.95.12.6578
  38. Woese, C. R. and Fox, G E. 1977. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl. Acad. Sci. USA 74:5088-5090
  39. Woese, C. R., Kandler, O. and Wheelis, M. L. 1990. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. USA 87:4576-4579 https://doi.org/10.1073/pnas.87.12.4576
  40. Zhou, J., Bruns, M. A. and Tiedje, J. M. 1996. DNA recovery from soils of diverse composition. Appl. Environ. Microbiol. 62:316-322

Cited by

  1. Taxonomic and functional assignment of cloned sequences from high Andean forest soil metagenome vol.101, pp.2, 2012, https://doi.org/10.1007/s10482-011-9624-8