• Title/Summary/Keyword: cultivation temperatures

Search Result 245, Processing Time 0.028 seconds

Growth and Survival Rates of Flat Oyster, Ostrea denselamellosa, by Condition of Larval Cultivation (벗굴 (Ostrea denselamellosa) 유생의 생육조건에 따른 성장과 생존)

  • Yang, Moon-Ho;Oh, Bong-Se;Han, Chang-Hee
    • The Korean Journal of Malacology
    • /
    • v.19 no.2
    • /
    • pp.133-142
    • /
    • 2003
  • For the effective seedling production of flat oyster, Ostrea denselamellosa, dietary value of live food, densities, water temperature and salinity on growth and survival rate of the larvae were examined. In rearing larvae by feeding them phytoplankton diets, the optimal survival rate and growth rate of larvae were found using a mixed phytoplankton diet which was mixed with Isochrysis galbana, Chaetoceros calcitrans and Chlorella sp. The highest growth and survival rates of the larvae were 208.4% and 38.8% with the phytoplankton diet. In growth and survival rates of larvae with various rearing densities, the highest survival and growth rates were 228.1% and 29.0% at the density of 2 individuals/ml. In observing rearing experiments of the flat oyster larvae under various temperature conditions, average growth rates of the larvae in respect to shell length were 202.2%, 240.4%, 250.6% and 121.3% in natural water temperatures (18-22$^{\circ}C$), 24$^{\circ}C$, 28$^{\circ}C$ and 32 $^{\circ}C$, respectively. And average survival rates of the larvae were 16.0%, 32.0%, 13.0% and 0% in natural water temperatures (18-22$^{\circ}C$), 24$^{\circ}C$, 28$^{\circ}C$ and 32$^{\circ}C$, respectively. In rearing at various salinities, the highest growth rates of the larvae in shell length was 240.0% at 30.0 psu and the highest survival rate was 31.0% at 25 psu.

  • PDF

The Environmental Adaptability of Pomacea canaliculata used for Weed Control in Wet Rice Paddies and Crop Damage Caused by Overwintered Golden Apple Snails (논 잡초방제용 Pomacea canaliculata의 환경 적응성과 월동 왕우렁이에 의한 작물 피해)

  • Lee, Sang Beom;Lee, Sang Min;Park, Chung Bae;Lee, Cho Rong;Ko, Byong Gu;Park, Kwang Lai;Hong, Seung Gil;Kim, Jin Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.1
    • /
    • pp.23-33
    • /
    • 2019
  • BACKGROUND: The golden apple snail(GAS, Pomacea canaliculata Lamarck) is an invasive freshwater snail. It has occurred 34 years since the introduction of the GAS to the Korea. The GASs have been used recently for weed control in wet rice cultivation. The GASs'adaptability to the environment of GAS has been improved and the GASs devour the young stage of the crops as well as weeds. METHODS AND RESULTS: We surveyed the survival area of the snails throughout the country during the winter seasons from 2000 to 2017 and crop damage due to GASs in 2017. Local maximum, minimum, and average air temperatures were monitored daily. The surveyed regions for the survival of the GASs in winters were Gangjin, Goheung, Shinan, Haenam, Gimhae, Haman, Busan, Jeju, and Seogwipo. The survival durations at low temperatures were 12 hours at $-5^{\circ}C$, 1 day at $-3^{\circ}C$, 2 days at $-1^{\circ}C$, 10 days at $0^{\circ}C$, and over 30 days at $3^{\circ}C$. The eggs of GASs were not able to overwinter. The overwintering condition of the GAS needed a water depth of 10-20 cm with well formed mud. Crop damages caused by the overwintering GASs occurred in rice and water dropwort. CONCLUSION: The overwintering GAS was first identified in Haenam, South Korea 2000 after introduction of the GAS. The overwintering area of GAS expanded to the mid-southern parts of Korea. We propose that it has not yet become a pest to rice or any other crop.

Appropriate Cold Treatment Periods and Shading Levels on Codonopsis lanceolata for Plug Seedling Production in Summer Season (더덕 플러그묘의 하절기 생산을 위한 적정 저온처리 기간과 차광 수준)

  • Eun Won Park;Jeong Hun Hwang;Hee Sung Hwang;Hyeon Woo Jeong;So Yeong Hwang;Jin Yu;Seung Jae Hwang
    • Journal of Bio-Environment Control
    • /
    • v.32 no.2
    • /
    • pp.157-164
    • /
    • 2023
  • Codonopsis lanceolata (S. et Z.) Trautv. is mainly cultivated in Korea and China as a medicinal crop. C. lanceolata is difficult to produce plug seedlings in the summer, because C. lanceolata has a low germination rate and is vulnerable to high temperatures. Cold treatment is effective in breaking dormancy of seeds and increasing the germination rate. Shading cultivation can control the solar irradiance received by plants and reduce the damage by high temperatures and strong light. This study was conducted to examine the appropriate cold treatment period for the improving germination of C. lanceolata, and shading level during the summer seedling period. Cold treatment experiments were conducted for 0 (control), 1, 2, 3, and 4 weeks at 4℃ before sowing. In the shading experiment, C. lanceolata was grown for 45 days with 0 (non-treatment), 45, 75% shading levels. Cold treatment for one week significantly improved the germination energy. The plant height, leaf area, and fresh and dry weights of C. lanceolata seedlings were significantly increased under the 45% shading level. Total root length, root surface area, and the number of root tips were significantly higher in shading treatment (45 and 75%) than in non-treatment. The C. lanceolata seedling's compactness and Dickson's quality index were the highest at 45% shading level. Therefore, these results recommended sowing C. lanceolata after cold treatment for one week at 4℃, and 45% shading level could stably culture C. lanceolata plug seedlings during the high temperature period.

Effect of Cooling Timing in the Root Zone on Substrate Temperature and Physiological Response of Sweet Pepper in Summer Cultivation (여름 파프리카 수경재배에서 근권 냉방 시간이 근권 온도와 생리적 반응에 미치는 영향)

  • Choi, Ki Young;Ko, Ji Yeon;Yoo, Hyung Joo;Choi, Eun Young;Rhee, Han Cheol;Lee, Yong-Beom
    • Horticultural Science & Technology
    • /
    • v.32 no.1
    • /
    • pp.53-59
    • /
    • 2014
  • This study aimed to determine an appropriate cooling timing in the root zone for lowering substrate temperature and its effect on physiological response of sweet pepper (Capsicum annum L. 'Orange glory') grown on coir substrate in summer, from the July 16 to October 15, 2012. Daily temperature of substrate, root activity, leaf water potential, first flowering date, and the number of fruits were measured by circulating cool water through a XL pipe in the root zone during either all day (all-day) or only night time (5 p.m. to 3 a.m.; night) from the July 23 to September 23, 2012. For comparison, no cooling (control) was also applied. Between the $23^{rd}$ of July and $31^{st}$ of August (hot temperature period), daily average temperatures in substrates were $25.6^{\circ}C$, $26.1^{\circ}C$, and $29.1^{\circ}C$ for the all-day and night treatment, and control respectively. About 1.8 to $5^{\circ}C$ lower substrate temperature was observed in both treatments compared to that of control. In sunny day ($600-700 W{\cdot}m^{-2}{\cdot}s^{-1}$), the highest temperature of substrate was measured between 4 p.m. and 5 p.m. under both the all-day and night treatments, whereas it was measured between 7 p.m. and 8 p.m. under the control. Substrate temperatures during the day (6 a.m. to 8 p.m.) and night (8 p.m. to 6 a.m.) differed depending on the treatments. During the day and night, averaged substrate temperature was lower about $3.3^{\circ}C$ and $4.0^{\circ}C$ for the all-day, and $2.1^{\circ}C$ and $3.4^{\circ}C$ for the night treatment, compared to that of control. In the all-day and night treatment, the TD [TD = temperature of (control)] was greater in bottom than that of other regions of the substrate. Between the day and night, no different TD values were observed under the all-day treatment, whereas under the night treatment there was difference with the greatest degree in the bottom of the substrate. During the hot temperature period, total numbers of days when substrate temperature was over $25^{\circ}C$ were 40, 23 and 27 days for the control, all-day, and night treatment, respectively, and the effect of lowering substrate temperature was therefore 42.5% and 32.5% for the all-day and night treatment, respectively, compared to that for the control. Root activity and leaf water potential of plants grown under the all-day treatment were significantly higher than those under the night treatment. The first flowering date in the all-day treatment was similar to that in the night treatment, but 4-5 day faster than in the control. Also, the number of fruits in both treatments was significantly higher than that in the control. However, there was no effect of root zone cooling on eliminating delay in fruiting caused by excessively higher air temperature (> $30^{\circ}C$), although the substrate temperature was reduced $18^{\circ}C$ to $5^{\circ}C$. These results suggest that the method of cooling root zone temperature need to be incorporated into the lowering growing temperature for growth and fruit set of health paprika.

The Effect of Root Zone Cooling at Night on Substrate Temperature and Physiological Response of Paprika in Hot Climate (고온기 야간시간 근권냉방이 파프리카 배지온도와 생리적 반응에 미치는 영향)

  • Choi, Ki Young;Ko, Ji Yeon;Choi, Eun Young;Rhee, Han Cheol;Lee, Sung Eun;Lee, Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.22 no.4
    • /
    • pp.349-354
    • /
    • 2013
  • This study examined a technique for cooling root zone aimed at lowering substrate temperature for sweet pepper (Capsicum annum L. 'Orange glory') cultivation in coir substrate hydroponics during hot season, from the $16^{th}$ of July to $15^{th}$ of October in 2012. The root zone cooling technique was applied by using an air duct (${\varnothing}12$ cm, hole size 0.1 mm) to blow cool air between two slabs during night (5p.m. to 3a.m.). Between the $23^{rd}$ of July and $31^{st}$ of August (hot temperature period), average daily substrate temperature was $24.7^{\circ}C$ under the root zone cooling, whereas it was $28.2^{\circ}C$ under condition of no cooling (control). In sunny day (600~700 W $m^{-2}{\cdot}s^{-1}$), average substrate temperatures during the day (6a.m. to 8p.m.) and night (8p.m. to 6a.m.) were lower about $1.7^{\circ}C$ and $3.3^{\circ}C$, respectively, under the cooling treatment, compared to that of control. The degree of temperature reduction in the substrate was averagely $0.5^{\circ}C$ per hour under the cooling treatment during 6p.m. to 8p.m.; however, there was no decrease in the temperature under the control. The temperature difference between the cooling and control treatments was $1.3^{\circ}C$ and $0.6^{\circ}C$ in the upper and lower part of the slab, respectively. During the hot temperature period, about 32.5% reduction in the substrate temperature was observed under the cooling treatment, compared to the control. Photosynthesis, transpiration rate, and leaf water potential of plants grown under the cooling treatment were significantly higher than those under the control. The first flowering date in the cooling was faster about 4 days than in the control. Also, the number of fruits was significantly higher than that in the control. No differences in plant height, stem thickness, number of internode, and leaf width were found between the plants grown under the cooling and control, except for the leaf length with a shorter length under the cooling treatment. However, root zone cooling influenced negligibly on eliminating delay in fruiting caused by excessively higher air temperature (> $28^{\circ}C$), although the substrate temperature was reduced by $3^{\circ}C$ to $5.6^{\circ}C$. These results suggest that the technique of lowering substrate temperature by using air-duct blow needs to be incorporated into the lowering growing temperature system for growth and fruit set of health paprika.

Assessment of High Temperature Impacts on Early Growth of Garlic Plant (Allium sativum L.) through Monitoring of Photosystem II Activities (광계II 활성 분석을 통한 마늘의 생육초기 고온 스트레스의 영향 평가)

  • Oh, Soonja;Moon, Kyung Hwan;Koh, Seok Chan
    • Horticultural Science & Technology
    • /
    • v.33 no.6
    • /
    • pp.829-838
    • /
    • 2015
  • Garlic (Allium sativum L.), one of the oldest cultivated crops, is the most widely used Allium species belonging to the family Lilliaceae. In this study, growth characteristics, photosystem II activity, and antioxidative enzyme activity were investigated in five temperatures ($10-30^{\circ}C$) during early growth stage of garlic to determine the optimum temperature for cultivation and assess the effects of high temperature on early growth of garlic. Vegetative growth (e.g., shoot height, number of leaves) of garlic plants was greater in the temperature ranges of $15-25^{\circ}C$. However, dry weight (of shoot, bulb, and total plant) of garlic was significantly greater at $20^{\circ}C$, compared to either below or above $20^{\circ}C$. $F_v/F_o$ and $F_v/F_m$ values were highest at $15-20^{\circ}C$, and decreased above $25^{\circ}C$. The chlorophyll a fluorescence induction OKJIP transient was also considerably affected by high temperature; the fluorescence yields $F_i$ and $F_P$ decreased considerably above $25^{\circ}C$, with the increase of $F_k$ and $W_k$. Activities of catalase and superoxide dismutase in leaves and peroxidase in roots were high in $20-25^{\circ}C$, and decreased significantly in $30^{\circ}C$. These results indicate that a growth temperature of $30^{\circ}C$ inhibits early growth of garlic and that it is desirable to culture garlic plants near $20^{\circ}C$. Fluorescence parameters such a $F_v/F_o$, $F_v/F_m$, $F_k$, $ET_o/CS_m$, and $PI_{abs}$ were significantly correlated with dry weight of whole garlic plants (p < 0.01), indicating that these fluorescence parameters can be used for early assessment of high temperature effects even though the damage to the plant is not very severe.

Effect of Different Wind-break Net on Reducing Damage of Cold Sea Wind (수도 풍해경감을 위한 방풍강 강목의 효과)

  • 이승필;김상경;이광석;최대웅;김칠용
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.35 no.4
    • /
    • pp.352-361
    • /
    • 1990
  • The reducing effect of wind injury was investigated using several wind-break nets in Youngdeok province where cold-wind damage is often occurred during rice growing season. The white-head damage of rice have been often occurred by typhoon during the period between August 15 to September 10 in the cold wind area of the eastern coastal during the last 11 years (1979-1989). This may suggest that the critical period for heading will be by August 15 in the regions. High evaporation coefficient, more than 250 due to typhoon passage over the regions resulted high injury of white head. Generally, the wind injury have been caused by warm and dry westerlies through Fohn apperance in Taebaeg mountains and by cool-humid wind which blows from coast to inland. The frequency of occurrence of the two types of typhoons were 25, 20%, respectively during rice cultivation. The instalation of wind-break net significantly reduced the wind blowing speed, depending on the net mesher with the higher effect in dence net. The distances between the net and cropping area also affect the wind speed: 23% reduction at 1m distance. 34% at 10m and 28% at 20m, respectively. The reducing effect was also observed even at 10 times height of the wind-break net. The instalation of wind-break net gave several effects on climate factor, showing that temperature increased by 0.8$^{\circ}C$(maximum), 0.7$^{\circ}C$(minimum), 0.6$^{\circ}C$(average) : water temperatures increased by 0.5$^{\circ}C$(maximum), 0.6$^{\circ}C$(minimum), 0.5$^{\circ}C$(average) : soil temperature increased 0.4$^{\circ}C$. The earlier heading and increasing growth rate, use of light, culm length, panicle number per hill, spikelet number per panicle, fertility and 1,000 grain weight were observed in the fields with the wind-break nets resulting in 10-15% increase in rice yield using 0.5${\times}$0.5cm nets. The increasing seedlings per hill gave higher grain yield by 13% in the cold wind damage regions of eastern coastals. and the wind-break was more significant in the field without the wind-break net. Wind injury of rice plant in the cold wind regions of eastern coastals in korea could be reduced by selection of tolerant varieties to wind injury, adjustment of transplanting time, and establishment of wind-break nets.

  • PDF

Growth, Storage and Fresh-cut Characteristics of Onion (Allium cepa L.) in Unstable Environmental Condition and Storage Temperature (양파의 이상 재배조건에서 생육과 저장온도에 따른 저장성 및 포장한 신선편이 특성)

  • Lee, Jung-Soo;Chang, Min-Sun;Park, SuHyoung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.22 no.3
    • /
    • pp.143-154
    • /
    • 2016
  • The purpose of this study was investigated the quality changes before and after harvesting, storage and, processing of onion. Experiments were carried out to compare the effect on the characteristics of the postharvest from preharvest factors using onion. This experiment had identified the characteristics of harvested onions after cultivating with several preharvest factors such as the light and water conditions. These tests were conducted in an onion growth in the field, storage, and processing of fresh-cut during a laboratory periods of 2 years. In first year, onion cultivars ('Kars' and 'Pop') were produced under stable or unstable environment conditions, these onions were stored at low temperature(0?). Measurement was evaluated by the growth amount after harvesting, and the fresh weight loss and respiration rate during storage. According to different culture conditions and storage temperatures, it was investigated the properties of the fresh-cut onion. Growth of onion was varied depending on the cultivars and culture conditions. The amount of growth on 'Kars' and 'Pop' onions were decreased by excessive soil water conditions with shading. These influences were found the morphological differences resulting for the cell tissue of onion being rough and large. Onion cultivated in excessive soil water with shading affected the degree of its respiration rate and fresh weight loss during storage. Ones in excessive soil water with shading were higher than the control in fresh weight loss and respiration rate, respectively. However fresh-cut onion could not investigated to clarify the difference due to effects of cultivation condition and storage temperature on some measure items such as electrolyte leakage and microbial number change. There was a change of only electrolyte leakage depending on the storage temperature, rather than cultivated conditions before harvesting factor. The results showed that the onion grown on in the good environment was represented to a good quality produce even after harvesting.

Phylogentic Position, Pigment Content and Optimal Growth Condition of the Unicellular Hydrogen-Producing Cyanobacterial Strains from Korean Coasts (한국 연안산 단세포성 수소생산 남세균 종주들의 분류계통, 색소함량 및 최적성장 환경)

  • PARK, JONG-WOO;KIM, JU HEE;CHO, AE-RA;JUNG, YUN-DUK;KIM, PYOUNG JOONG;KIM, HYUNG-SEOP;YIH, WONHO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.20 no.3
    • /
    • pp.131-140
    • /
    • 2015
  • To set up unicellular cyanobacterial strains with photo-biological $H_2$ production potential, live samples were repeatedly collected from 68 stations in the coastal zone of Korea for the four years since 2005. Among 77 cyanobacterial strains established six (KNU strains, CB-MAL002, 026, 031, 054, 055 and 058) were finally chosen as the excellent strains for $H_2$ production with $H_2$ accumulation over 0.15 mL $H_2\;mL^{-1}$ under general basic $H_2$ production conditions as well as positive $H_2$ production for more than 60 hr. To explore optimum procedures for higher $H_2$ production efficiency of the six cyanobacterial strains, the inter-strain differences in the growth rate under the gradients of water temperature and salinity were investigated. The maximum daily growth rates of the six strains ranged from 1.78 to 2.08, and all of them exhibited $N_2-fixation$ ability. Based on the similarity of the 16S rRNA sequences, all the test strains were quite close to Cyanothece sp. ATCC51142 (99%). The six strains, however, were grouped into separate clades from strain ATCC51142 in the molecular phylogeny diagram. Chlorophyll- a content was 3.4~7.8% of the total dried weight, and the phycoerythrin and phycocyanin contents were half of those in the Atlantic strain, Synechococcus sp. Miami BG03511. The growth of the six strains was significantly suppressed at temperatures above the optimal range, $30{\sim}35^{\circ}C$, to be nearly stopped at $40^{\circ}C$. The growth was not inhibited by high salinities of 30 psu salinity in all the strains while strain CB055 maintained its high growth rate at low salinities down to 15 psu. The euryhaline strains like CB055 might support massive biotechnological cultivation systems using natural basal seawater in temperate latitudes. base seawater. The biological and ecophysiological characteristics of the test strains may contribute to designing the optimal procedures for photo-biological $H_2$ production by unicellular cyanobacteria.

Effect of Globe Growth and Chromogenic on Day and Night Temperature and the LED Light Treatment of Expert Grafted Cactus (Chamecereus silvestrii f. variegata) Cultivar 'Hee-Mang' (수출 접목선인장 산취 '희망'의 주.야 온도 및 LED광 처리가 모구 생육과 발색에 미치는 영향)

  • Nam, Sang-Yong;Park, Sun-Mi;Ahn, Dong-Hyun
    • Journal of Bio-Environment Control
    • /
    • v.19 no.3
    • /
    • pp.140-146
    • /
    • 2010
  • This experiment was conducted to find the day and night temperature combination and the light-emitting diodes (LEDs) on the most effective globe coloration and growth of Chamecereus silvestrii f. variegata 'Hee-Mang'. The $L^*$value, $a^*$value and $b^*$value were all significant difference in the yellow globe color expression in the day and night temperature combination. Especially, the bright yellow color and visual value were the highest in the temperature combination, the day temperature of $20^{\circ}C$ and night temperature of $20^{\circ}C$. Globe color quality was lowered from the day temperature of $25^{\circ}C$ and night temperatures of $5^{\circ}C$ and $10^{\circ}C$ combination. In light-emitting diodes (LEDs) treatments, $a^*$value and $b^*$value are significant difference. A unique beautiful yellow coloration and globe quality were maintained the $a^*$value of +5.23, $b^*$value of +39.9 in a red LED. The optimum temperature range and light-emitting diodes (LEDs) on the globe color expression were the most effective the day temperature of 200e and night temperature of $20^{\circ}C$ and a red LED. In addition, the outer globe color quality of Chamecereus silvestrii f. variegata cultivation, rather than the light environment improvement is better in a proper temperature environment to keep. Especially, a unique globe color expression of yellow lines was most effective in a red LED.