DOI QR코드

DOI QR Code

Effect of Cooling Timing in the Root Zone on Substrate Temperature and Physiological Response of Sweet Pepper in Summer Cultivation

여름 파프리카 수경재배에서 근권 냉방 시간이 근권 온도와 생리적 반응에 미치는 영향

  • Choi, Ki Young (Department of Environmental Horticulture, The University of Seoul) ;
  • Ko, Ji Yeon (Department of Environmental Horticulture, The University of Seoul) ;
  • Yoo, Hyung Joo (Department of Environmental Horticulture, The University of Seoul) ;
  • Choi, Eun Young (Department of Green Technology Convergence, KonKuk University) ;
  • Rhee, Han Cheol (Protected Horticulture Experiment Station, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Lee, Yong-Beom (Department of Environmental Horticulture, The University of Seoul)
  • 최기영 (서울시립대학교 환경원예학과) ;
  • 고지연 (서울시립대학교 환경원예학과) ;
  • 유형주 (서울시립대학교 환경원예학과) ;
  • 최은영 (건국대학교 녹색기술융합학과) ;
  • 이한철 (국립원예특작과학원 시설원예시험장) ;
  • 이용범 (서울시립대학교 환경원예학과)
  • Received : 2013.08.13
  • Accepted : 2013.11.19
  • Published : 2014.02.28

Abstract

This study aimed to determine an appropriate cooling timing in the root zone for lowering substrate temperature and its effect on physiological response of sweet pepper (Capsicum annum L. 'Orange glory') grown on coir substrate in summer, from the July 16 to October 15, 2012. Daily temperature of substrate, root activity, leaf water potential, first flowering date, and the number of fruits were measured by circulating cool water through a XL pipe in the root zone during either all day (all-day) or only night time (5 p.m. to 3 a.m.; night) from the July 23 to September 23, 2012. For comparison, no cooling (control) was also applied. Between the $23^{rd}$ of July and $31^{st}$ of August (hot temperature period), daily average temperatures in substrates were $25.6^{\circ}C$, $26.1^{\circ}C$, and $29.1^{\circ}C$ for the all-day and night treatment, and control respectively. About 1.8 to $5^{\circ}C$ lower substrate temperature was observed in both treatments compared to that of control. In sunny day ($600-700 W{\cdot}m^{-2}{\cdot}s^{-1}$), the highest temperature of substrate was measured between 4 p.m. and 5 p.m. under both the all-day and night treatments, whereas it was measured between 7 p.m. and 8 p.m. under the control. Substrate temperatures during the day (6 a.m. to 8 p.m.) and night (8 p.m. to 6 a.m.) differed depending on the treatments. During the day and night, averaged substrate temperature was lower about $3.3^{\circ}C$ and $4.0^{\circ}C$ for the all-day, and $2.1^{\circ}C$ and $3.4^{\circ}C$ for the night treatment, compared to that of control. In the all-day and night treatment, the TD [TD = temperature of (control)] was greater in bottom than that of other regions of the substrate. Between the day and night, no different TD values were observed under the all-day treatment, whereas under the night treatment there was difference with the greatest degree in the bottom of the substrate. During the hot temperature period, total numbers of days when substrate temperature was over $25^{\circ}C$ were 40, 23 and 27 days for the control, all-day, and night treatment, respectively, and the effect of lowering substrate temperature was therefore 42.5% and 32.5% for the all-day and night treatment, respectively, compared to that for the control. Root activity and leaf water potential of plants grown under the all-day treatment were significantly higher than those under the night treatment. The first flowering date in the all-day treatment was similar to that in the night treatment, but 4-5 day faster than in the control. Also, the number of fruits in both treatments was significantly higher than that in the control. However, there was no effect of root zone cooling on eliminating delay in fruiting caused by excessively higher air temperature (> $30^{\circ}C$), although the substrate temperature was reduced $18^{\circ}C$ to $5^{\circ}C$. These results suggest that the method of cooling root zone temperature need to be incorporated into the lowering growing temperature for growth and fruit set of health paprika.

본 실험은 고온기 근권 냉방 시간에 따른 배지 온도 하강과 파프리카(Capsicum annum L.) 'Orange glory'의 생리적 반응을 알아보고자 7월 16일부터 10월 15일까지 코이어 배지에서 수경 재배하였다. 배지의 일평균, 최고 및 최저 온도변화와 파프리카의 뿌리 활력, 수분 포텐셜, 개화시기 및 착과수 등을 측정하였다. $20{\pm}2^{\circ}C$의 냉수를 순환시키는 XL 파이프 근권부 냉방시간 처리는 전일(전일, 24시간), 야간(야간, 오후 5시-오전 3시), 및 냉방 무처리(대조구)로 7월 23일부터 9월 23일까지 처리하였다. 고온기(7월 23일-8월 31일) 동안 일평균 배지 온도가 전일 처리구에서는 $25.6^{\circ}C(22.7-28.2^{\circ}C)$, 야간 처리구에서는 $26.1^{\circ}C(22.9-29.2^{\circ}C)$로 대조구의 $29.1^{\circ}C(24.7-33.2^{\circ}C)$에 비해 $1.8-5^{\circ}C$ 낮아졌다. 하루 중(맑은 날, 8월 1일) 배지의 최고온도 도달 시간이 전일과 야간 처리구에서는 오후 4-5시였으며, 대조구는 오후 7-8시였다. 주간(오전 6시-오후 8시)과 야간(오후 8시-오전 6시) 시간의 배지 온도는 처리에 따라 차이를 보였다. 주간/야간의 배지 평균온도는 대조구보다 전일 처리구에서 $3.3^{\circ}C/4^{\circ}C$, 야간 처리구에서 $2.1^{\circ}C/3.4^{\circ}C$ 낮아졌다. 배지 깊이별 배지 온도 차(대조구 배지 온도 - 처리구 배지 온도)는 하부에서 가장 컸다. 전일 처리구의 배지 온도차 변화는 배지 상/중/하부에서 완만하였으나, 야간 처리구는 주간과 야간 시간대 배지 온도 차가 배지 중간, 하부에서 커졌다. 배지 평균 온도가 $25^{\circ}C$ 이상 계측된 날이 대조구에서는 40일, 전일 처리구에서는 23일, 야간 처리구에서는 27일로 대조구에 비해 각각 42.5%, 32.5% 배지온도 하강효과를 보였다. 전일 처리구의 파프리카 뿌리 활력과 수분 포텐셜은 야간 처리구보다 유의하게 높았다. 근권 냉방 처리의 첫 개화시기는 4-5일 앞당겨지고 착과수도 유의하게 증가하였다. 그러나 고온기 지상부가 고온(${\geq}30^{\circ}C$)으로 파프리카 착과는 늦어졌다. 이는 근권 냉방으로 배지 온도가 $1.8-5.0^{\circ}C$ 낮아졌으나, 고온기 파프리카 생육과 착과를 위해서는 근권 냉방뿐 아니라 지상부 온도를 낮추는 방식이 병행되어야 한다.

Keywords

References

  1. Bakker, J.C. 1989. The effects of temperature on flowering, fruit set and fruit development of glass sweet pepper. J. Hort. Sci. 64:313-320.
  2. Behboudian, M.H., W.R. Graves, C.S. Walsh, and R.F. Korcak. 1994. Water relations, mineral nutrition, growth and $^{13}$C discrimination in two apple cultivars under daily episodes of high root-medium temperature. Plant Soil 162:125-133. https://doi.org/10.1007/BF01416098
  3. Gosselin, A. and M.J. Trudel. 1985. Influence of root zone temperature on growth, development and yield of cucumber plants cv. Toska. Plant Soil 85:327-336. https://doi.org/10.1007/BF02220188
  4. He, J., S.K. Lee, and I.C. Dodd. 2001. Limitations to photosynthesis of lettuce grown under tropical conditions: Alleviation by root-zone cooling. J. Expt. Bot. 52:1323-1330. https://doi.org/10.1093/jexbot/52.359.1323
  5. Hirata, K. 1990. Plant nutrition experiment method. Hakubunkansha Publishers, Ltd., Tokyo, Japan. p. 52-55.
  6. Jang, Y.A., J.G. Lee, Y.C. Um, S.Y. Kim, S.S. Oh, and S.H. Cha. 2010. Effects of nutrient solution cooling on fruit setting and yield of paprika in summer hydroponics. Kor. J. Hort. Sci. Technol. 28:58-59. (Abstr.)
  7. Khan, E.M. and H.C. Passam. 1992. Flowering, fruit set and development of the fruit and seed of sweet pepper cultivated under conditions of high ambient temperature. J. Hort. Sci. 67:251-258.
  8. Kim, K.D, Y.S. Ha, K.M. Lee, D.H. Park, S. Kwon, J.M. Park, and S.W. Chung. 2010. Development of temperature control technology of root zone using evaporative cooling methods in the strawberry hydroponics. J. Bio-Env. Con. 19:184-188.
  9. Kim, S.E., Y.S. Kim, and S.Y. Sim. 2011. Root-zone temperature control of tomato plant cultivated in perlite bag during summer season. Kor. J. Hort. Sci. Technol. 29:102-109.
  10. Lee, H.W. and Y.S. Kim. 2011. Application of low pressure fogging system for commercial tomato greenhouse cooling. J. Bio-Env. Con. 20:1-7
  11. Lee, J.H., K.J. Kwon, O.K. Kwon, Y.H. Choi, and D.K. Park. 2002. Cooling efficiency and growth of tomato as affected by root zone cooling methods in summer season. J. Bio-Env. Con. 11:81-87.
  12. Moon, J.H., Y.K. Kang, and H.D. Suh. 2007. Effect of root-zone cooling on the growth and yield of cucumber at supraoptimal air temperature. Acta Hort. 761:271-274.
  13. Morgan, L. 2011. Root zone chilling. http://www.thctalk.com/ cannabis-forum/archive/index.php/t-50357.html.
  14. Na, T.S., K.J. Choi, B.K. Yun, M.S. Cho, H.G. Kim, and H.J. Kim. 2011. Cooling effect on bell pepper on glass house in summer. Kor. J. Hort. Sci. Technol. 29:79. (Abstr.)
  15. Rylski, I. and M. Spigelman. 1982. Effects of different diurnal temperature combinations on fruit set of sweet pepper. Scientia Hort. 17:101-106. https://doi.org/10.1016/0304-4238(82)90001-2

Cited by

  1. Effect of intracanopy lighting and/or root-zone temperature on high-wire tomato production under supra-optimal air temperature vol.1134, pp.None, 2016, https://doi.org/10.17660/actahortic.2016.1134.9
  2. 여름철 수경재배 시 포그 분무와 차광에 의한 하우스 내부 온도 및 광 환경 변화 vol.30, pp.3, 2014, https://doi.org/10.12791/ksbec.2021.30.3.230