DOI QR코드

DOI QR Code

Investigation of Colony Forming Unit (CFU) of Microorganisms in the Paprika-grown Greenhouses Using Open and Closed Soilless Culture Systems

순환식과 비순환식 수경재배 방식에 따른 파프리카 재배온실 내 미생물의 집락형성단위(CFU) 조사

  • Ahn, Tae In (Department of Plant Science, Seoul National University) ;
  • Kim, Do Yeon (Department of Plant Science, Seoul National University) ;
  • Son, Jung Eek (Department of Plant Science, Seoul National University)
  • 안태인 (서울대학교 식물생산과학부) ;
  • 김도연 (서울대학교 식물생산과학부) ;
  • 손정익 (서울대학교 식물생산과학부)
  • Received : 2013.07.03
  • Accepted : 2013.10.01
  • Published : 2014.02.28

Abstract

This study was conducted to compare colony forming unit (CFU) of microorganisms in closed and open soilless culture systems for estimating the possibility for potential disease occurrence. Samples were collected at four different positions in four commercial greenhouses with closed or open soilless culture system using rock wool or coir as substrate, respectively. The distance between sampling positions was 3 cm starting from the substrate and the surface area of each position was $25cm^2$. The CFU of fungi was significantly higher in the open system, while that of bacteria was not significantly different but showed relatively lower in the closed system. Samples collected at the plastic surface of the substrates where little environmental effects occurred from drainage showed lower CFU than any other positions. The principal component analysis showed that samples collected on the drainage pathway highly affected the changes in microbial population in the greenhouse. These results indicated that greenhouses with closed soilless culture are expected to have more advantageous conditions for restraining the microbial growth, resulting in the lower potential of disease occurence in greenhouse ecosystem.

본 연구는 순환식과 비순환식 수경재배 온실 내 특정 구역에서 잠재적인 병발생 가능성을 추정하기 위하여 미생물 시료의 채취 및 배양을 통하여 집락형성단위수(CFU)를 분석하였다. 시료의 채취는 배지를 기준으로 각 구역별 3cm 간격으로 $25cm^2$의 면적에 대해 4개의 구역을 각 온실별로 3회 반복하여 이루어졌다. 비순환식과 순환식 수경재배 온실에서 암면과 코이어를 배지로 사용하는 각 2개 농가를 조사대상으로 하였다. 진균류의 경우 비순환식 수경재배 온실에서 유의적으로 높은 수준의 집락형성단위수(CFU)가 관찰되었다. 세균류의 경우는 유의적인 차이는 관찰되지 않았지만, 순환식 수경재배 온실이 비교적 낮은 경향을 나타냈다. 위치 별 CFU의 비교에서는 순환식과 비순환식 모두 배액의 발생에 따른 환경조건의 변화가 적은 배지 부분에서 가장 낮은 수준의 CFU가 관찰되었다. 주성분 분석결과 온실 내 배액의 이동 경로 상에서 수집된 시료가 미생물의 개체수 변화에 많이 기여하고 있는 것으로 판단되었다. 순환식 수경재배 온실은 비순환식 수경재배 온실에 비해 미생물 증식억제에 유리한 조건에 있으며, 이는 외부 환경에 비해 비교적 단순한 생태계로 구성된 온실의 조건을 고려해 보았을 때 잠재적인 병 발생 가능성이 상대적으로 낮음을 의미한다.

Keywords

References

  1. Agrios, G.N. 2005. Plant pathology. 5th ed. Elsevier Academic Press, Burlington, MA, USA.
  2. Ahn, T.I, J.H. Shin, and J.E. Son. 2010. Analysis of changes in ion concentration with time and drainageratio under EC-based nutrient control in closed-loop soilless culture for sweet pepper plants (Capsicum annumL. 'Boogie'). J. Bio-env. Control 19: 298-304.
  3. Chang, E.H., R.S. Chung, and Y.H. Tsai. 2007. Effect of different application rates of organic fertilizer on soil enzyme activity and microbial population. Soil Sci. Plant Nutr. 53:132-140. https://doi.org/10.1111/j.1747-0765.2007.00122.x
  4. Domeno, I., N. Irigoyenand, and J. Muro. 2009. Evolution of organic matter and drainages in wood fibre and coconut fibre substrates. Sci. Hort. 122:269-274. https://doi.org/10.1016/j.scienta.2009.05.006
  5. Etchells, J.L., T.A. Bell, R.N. Costilow, C.E. Hoodand, and T.E. Anderson. 1973. Influence of temperature and humidity on microbial, enzymatic, and physical changes of stored, pickling cucumbers. Appl. Microbiol. 26:943-950.
  6. Flory, S.L. and K. Clay. 2013. Pathogen accumulation and longterm dynamics of plant invasions. J. Ecol. 101:607-613. https://doi.org/10.1111/1365-2745.12078
  7. Lee, J.G., B.Y. Leeand, and H.J. Lee. 2006. Accumulation of phytotoxic organic acids in reused nutrient solution during hydroponic cultivation of lettuce (Lactuca sativa L.). Sci. Hort. 110:119-128. https://doi.org/10.1016/j.scienta.2006.06.013
  8. Ko, M.T, T.I. Ahn. Y.Y. Cho, and J.E. Son. 2013. Uptake of nutrients and water by paprika (Capsicum annuum L.) as affected by renewal period of recycled nutrient solution in closed soilless culture. Hort. Environ. Biotechnol. 54:412-421. https://doi.org/10.1007/s13580-013-0068-0
  9. Mcavoy, R.J. 1994. Nitrate-nitrogen movement through the soilprofile beneath a containerized greenhouse crop irrigated with 2 leaching fractions and 2 wetting agent levels. J. Amer. Soc. Hort. Sci. 119:446-451.
  10. Rowe, R.C. and J.D. Farley. 1978. Control of fusarium crown and root-rot of greenhouse tomatoes by inhibiting recolonization of steam-disinfested soil with a captafol drench. Phytopathology 68:1221-1224. https://doi.org/10.1094/Phyto-68-1221
  11. Schon, M.K. and M.P. Compton. 1997. Comparison of cucumbers grown in rockwool or perlite at two leaching fractions. HortTechnology 7:30-33.
  12. Sridhar, K.R. and F. Barlocher. 2000. Initial colonization, nutrient supply, and fungal activity on leaves decaying in streams. Appl. Environ. Microbiol. 66:1114-1119. https://doi.org/10.1128/AEM.66.3.1114-1119.2000
  13. van Maanen, A. and X.M. Xu. 2003. Modelling plant disease epidemics. Eur. J. Plant Pathol. 109:669-682. https://doi.org/10.1023/A:1026018005613
  14. Van Os, E.A. 1991. Closed business systems for less pollution from greenhouses. Acta. Hort. 294:49-58
  15. Van Os, E.A. 1999. Closed soilless growing systems: A sustainable solution for Dutch greenhouse horticulture. Water Sci. Technol. 39:105-112.
  16. Zekki, H., L. Gauthier, and A. Gosselin. 1996. Growth, productivity, and mineral composition of hydroponically cultivated greenhouse tomatoes, with or without nutrient solution recycling. J. Amer. Soc. Hort. Sci. 121:1082-1088.