• Title/Summary/Keyword: cultivation environments

Search Result 137, Processing Time 0.033 seconds

Development of Media for the Cultivation of Enterobacter amnigenus GG0461 and its Nitrate Uptake (Enterobacter amnigenus GG0461 균주의 생산을 위한 배지개발 및 질산이온 흡수)

  • Park, Seong-Wan;Yoon, Young-Bae;Wang, Hee-Sung;Kim, Young-Kee
    • Journal of Applied Biological Chemistry
    • /
    • v.54 no.4
    • /
    • pp.252-257
    • /
    • 2011
  • To remove excess nitrate from the agricultural environments, Enterobacter amnigenus GG0461 has been isolated as a bacterial strain having high capability of nitrate uptake activity. This strain was able to remove nitrate more than 3,000 ppm (50 mM) in the Pseudomonas agar F (PAF) medium. Therefore, it could be a candidate strain for a nitrate scavenger in the various contaminated environments, such as agricultural soils, livestock sewage, and industrial wastewater. In order to develop medium for the large-scale production of the strain GG0461, each component of PAF medium was replaced with the corresponding commercial product and the optimal conditions for bacterial growth and nitrate uptake activity were measured. Glycerol was replaced with the commercially available product and the nitrogen source was substituted with commercial tryptone, yeast extract, soybean meal, and fermented fish extract. Bacterial growth and nitrate uptake activity were maximal in the media containing 2% tryptone, followed by yeast extract, soybean meal, and fermented fish extract. The pH of the growth medium containing 2% tryptone was decreased by the bacterial nitrate uptake, suggesting that the nitrate uptake is mediated by a nitrate/proton antiporter. This result shows that the medium containing commercial tryptone was good enough for the physiological activity of the strain GG0461. Each component of PAF medium was successfully replaced with the corresponding commercial product except peptone. In conclusion, the composition of medium for the cultivation of the strain GG0461 was determined as 2% tryptone, 1% glycerol, plus required salts according to the composition of PAF medium.

Implementation of Crops Monitoring System Using Wireless Sensor Networks (무선 센서 네트워크를 이용한 농작물 모니터링 시스템 구현)

  • Lee, Young-Chul;Jo, Seung-Eon;Oh, Chang-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.4
    • /
    • pp.324-331
    • /
    • 2008
  • In this paper, we developed the crops monitoring system using wireless sensor networks. It can acquire the information about the cultivation environments from a temperature, humidity, illumination and soil sensor then use the detailed information for very useful. The acquisition about the cultivation environment information with wireless sensor networks can be made up an environment that an administrator is able to confirm the information and wherever in a remote place instead of conventional way visiting the cultivate place by investing a lot of money and time. Therefore, it could be saving money, time and effort, and reduced the damages from the natural disasters such as a cold-weather damage and drought. In addition, we could be possible preventing from the damages of blight and harmful insects according to the temperature by an analysis. In agriculture field, this system could be supported for making a foundation of the advanced technology developing endless, and, in IT field, it is look forward to preparing the opportunity which creates a new requirement on the new technology.

  • PDF

Medicinal Components in Bupleurum Species (시호의 약리성분 특성)

  • Kim, Kwan-Su;Lee, Seung-Tack;Chae, Young-Am
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.spc1
    • /
    • pp.123-144
    • /
    • 1996
  • This review deals briefly with the various medicinal components(mainly saikosaponins), their biological activities and the variation of their contents by different cultivation environment and plant parts in Bupleurum species. Bupleuri radix, a crude drug, is the root of Bupleurum falcatum L. (Korea, Japan), B. chinense(China), and their related species (Umbelliferae). There are over 120 species in Bupleurum genus throughout world, mainly Asian area, and over 5 species in Korea, investigated up to now. These plants contain many physiological active compounds and the principal components are saikosaponins. Major activities of this crude drug and saikosaponins are the anti-inflammatory and antihepatotoxic activities. Saikosaponins and their derivatives in Bupleurum spp. have been chemically studied, isolated and identified over 70 compounds in over 50 species. Other components, physiologically active ones, also have been investigated, which are the groups of lignan, flavonoid, essential oil, polyacetylene, polysaccharide, etc. Saikosaponins belong to the group of triterpenoid saponin chemotaxonomically and occur the accumulation and turnover in plant tissues through secondary metabolism, mevalonic acid pathway. The contents and kinds of saikosaponins and other components in Bupleurum spp. plants are various due to different species and growing environments, as the plant growth characters and yield are various. Most of medicinal plants as well as Bupleurum species are very useful as agricultural products and traditional medicines, and also are very valuable as genetic resources and natural products. So we need to collect, evaluate, preserve, and utilize various medicinal plants, and also to under-stand secondary metabolism and improve the breeding and cultivation techniques for the safe production of crude drugs with high quality and yielding.

  • PDF

Effects of CaMSRB2-Expressing Transgenic Rice Cultivation on Soil Microbial Communities

  • Sohn, Soo-In;Oh, Young-Ju;Kim, Byung-Yong;Cho, Hyun-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.7
    • /
    • pp.1303-1310
    • /
    • 2016
  • Although many studies on the effects of genetically modified (GM) crops on soil microorganisms have been carried out over the past decades, they have provided contradictory information, even for the same GM crop, owing to the diversity of the soil environments in which they were conducted. This inconsistency in results suggests that the effects of GM crops on soil microorganisms should be considered from many aspects. In this study, we investigated the effects of the GM drought-tolerant rice MSRB2-Bar-8, which expresses the CaMSRB2 gene, on soil microorganisms based on the culture-dependent and culture-independent methods. To this end, rhizosphere soils of GM and non-GM (IM) rice were analyzed for soil chemistry, population densities of soil microorganisms, and microbial community structure (using pyrosequencing technology) at three growth stages (seedling, tillering, and maturity). There was no significant difference in the soil chemistry between GM and non-GM rice. The microbial densities of the GM soils were found to be within the range of those of the non-GM rice. In the pyrosequencing analyses, Proteobacteria and Chloroflexi were dominant at the seedling stage, while Chloroflexi showed dominance over Proteobacteria at the maturity stage in both the GM and non-GM soils. An UPGMA dendrogram showed that the soil microbial communities were clustered by growth stage. Taken together, the results from this study suggest that the effects of MSRB2-Bar-8 cultivation on soil microorganisms are not significant.

A Study on Economical Efficiency Evaluation of Semiforcing under Structure Watermelon Cultivators (반촉성 시설수박 재배농가의 경제적 효율성 분석)

  • Kim, Woong;Kim, Jai Hong
    • Korean Journal of Agricultural Science
    • /
    • v.33 no.2
    • /
    • pp.179-193
    • /
    • 2006
  • Technical efficiency of semiforcing watermelon growers is 0.8248 on average, and distributed between 0.6744 and 0.9268. The result showed that semiforcing watermelon growers had by 18% of technical inefficiency and could be assumed that increasing technical efficiency could induce watermelon production more increase. Consequently, if growers' technical efficiency were improved while other environments were constant, watermelon production could be increased. Following the results from the inefficiency effect model, all assumption coefficient such as growers age etc, are significant at 10% level. Estimate of dispersion parameter ${\gamma}$ is 0.89, which confirms those differences between practical output and frontier output were derived from the technical efficiencies among growers. Differences of production system between high and low level growers in production efficiency were showed at side altitude, ventilation and heat-retaining in section of facilities and automation, soil test and calcium application in section of environment management, transplant preparation and duration of pollination in section of crop management and shipment place, sorting degree and management record analysis in section of business management respectively. As a result of analyzing consulting data by using standard diagnosis table of watermelon cultivation under structure which cultivated on semi-forced watermelon growers, gap between high and low level growers was 7.0 points in facility automation section, 7.1 points in environment section, 8.8 points in crop management section and 13.6 points in business management section, respectively, which were the biggest one among them. In case of excluding information-related items from the evaluation index of business management section, changes of business achievement are to occur. Therefore, it is recommended for us to review the standard diagnostic table of watermelon cultivation under structure by dividing evaluation index of management section into management and information.

  • PDF

Study on the Characteristics of Cultivation Period, Adaptive Genetic Resources, and Quantity for Cultivation of Rice in the Desert Environment of United Arab Emirates (United Arab Emirates 사막환경에서 벼 재배를 위한 재배기간, 유전자원 및 수량 특성 연구)

  • Jeong, Jae-Hyeok;Hwang, Woon-Ha;Lee, Hyeon-Seok;Yang, Seo-Yeong;Choi, Myoung-Goo;Kim, Jun-Hwan;Kim, Jae-Hyeon;Jung, Kang-Ho;Lee, Su-Hwan;Oh, Yang-Yeol;Lee, Kwang-Seung;Suh, Jung-Pil;Jung, Ki-Yuol;Lee, Jae-Su;Choi, In-Chan;Yu, Seung-hwa;Choi, Soon-Kun;Lee, Seul-Bi;Lee, Eun-Jin;Lee, Choung-Keun;Lee, Chung-Kuen
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.3
    • /
    • pp.133-144
    • /
    • 2022
  • This study was conducted to investigate the cultivation period, adaptive genetic resources, growth and development patterns, and water consumption for rice cultivation in the desert environment of United Arab Emirates (UAE). R esearch on rice cultivation in the desert environment is expected to contribute to resolving food shortages caused by climate change and water scarcity. It was found that the optimal cultivation period of rice was from late November to late April of the following year during which the low temperature occurred at the vegetative growth stage of rice in the UAE. Asemi and FL478 were selected to be candidate cultivars for temperature and day-length conditions in the desert areas as a result of pre-testing genetic resources under reclaimed soil and artificial meteorological conditions. In the desert environment in the UAE, FL478 died before harvest due to the etiolation and poor growth in the early stage of growth. In contrast, Asemi overcame the etiolation in the early stage of growth, which allowed for harvest. The vegetative growth phases of Asemi were from early December to early March of the following year whereas its reproductive growth and ripening phases were from early March to late March and from late March to late April, respectively. The yield of milled rice for Asemi was 763kg/10a in the UAE, which was about 41.8% higher than that in Korea. Such an outcome was likely due to the abundant solar radiation during the reproductive growth and grain filling periods. On the other hand, water consumption during the cultivation period in the UAE was 2,619 ton/10a, which was about three times higher than that in Korea. These results suggest that irrigation technology and development of cultivation methods would be needed to minimize water consumption, which would make it economically viable to grow rice in the UAE. In addition, select on of genetic resources for the UAE desert environments such as minimum etiolation in the early stages of growth would be merited further studies, which would promote stable rice cultivation in the arid conditions.

Assessing weediness of herbicide tolerant genetically modified soybean

  • Ko, Eun Mi;Kim, Do Young;Kim, Hye Jin;Chung, Young Soo;Kim, Chang-Gi
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.4
    • /
    • pp.560-566
    • /
    • 2016
  • Imports of genetically modified (GM) soybeans (Glycine max) for food or feed consumption in Korea have been increasing. Although the cultivation of GM soybeans has not yet been allowed in Korea, the number of field tests for GM soybeans has also been rising. This study was conducted to investigate whether herbicide tolerant GM soybean can survive and persist in uncultivated environments when they escape from transportation routes or from isolated fields. Seeds of GM and non-GM soybeans and wild soybeans (Glycine soja) were buried in 2 and 15 cm soil depths and their viability was examined after 1, 2, 6, and 10 months. GM and non-GM soybean seeds completely lost their viability within six months of burial, whereas seeds of wild soybean maintained their viability during the study period. Seeds of soybean and wild soybeans that were sown on the soil surface germinated and grew to vegetative cotyledon stage. Seedlings of GM and non-GM soybean did not compete well with weeds, including Cerastium glomeratum, Alopecurus aequalis var. amurensis, Capsella bursa-pastoris, Conyza canadensis, Stellaria aquatica, and Erigeron annuus. Also, GM soybean did not survive through winter. However, wild soybeans competed well with the weeds and became dominant in August. Herbicide tolerant GM soybean is unlikely to persist under uncultivated environments and to become weeds.

Exploring the Evaluation Framework of Maker Education (메이커교육(Maker Education) 평가틀(Evaluation Framework) 탐색)

  • Kang, Inae;Yoon, Hyea Jin
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.11
    • /
    • pp.541-553
    • /
    • 2017
  • Maker education rooted on Maker Movement refers to constructivist learning approach in which students as makers participate in producing visible outcomes through self-directed inquiry and creative hands-on activities in a real life context to solve their personal or social problems. The Maker education, therefore, stresses cultivation of 'maker mindset' in the process-oriented learning environments, pursuing evaluation aspects different from those in the existing educational system. In this context, this study aimed to explore an evaluation framework for the Maker education which reflects the Maker mindset: First, a literature review was conducted to search for the evaluation framework of the maker education which consists of the category of 5 ONs (Minds-on, Hands-on, Hearts-on, Social-on, Acts-on) representing intellectual, physical, emotional, interpersonal and practical aspects, respectively; Second, a Delphi survey for content validity was carried out to confirm the adequacy of the 5 ONs category along with sub-elements for each category. Finally, this study presented the evaluation framework for the Maker education, which is expected to be used as feedback rather than a measuring tool for the process and environments of the Maker education.

The agricultural production forecasting method in protected horticulture using artificial neural networks (인공신경망을 이용한 시설원예 농산물 생산량 예측 방안)

  • Min, J.H.;Huh, M.Y.;Park, J.Y.
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.485-488
    • /
    • 2016
  • The level of domestic greenhouse complex environmental control technology is a hardware-oriented automation steps that mechanically control the environments of greenhouse, such as temperature, humidity and $CO_2$ through the technology of cultivation and consulting experts. This automation brings simple effects such as labor saving. However, in order to substantially improve the output and quality of agricultural products, it is essential to track the growth and physiological condition of the plant and accordingly control the environments of greenhouse through a software-based complex environmental control technology for controlling the optimum environment in real time. Therefore, this paper is a part of general methods on the greenhouse complex environmental control technology. and presents a horticulture production forecasting methods using artificial neural networks through the analysis of big data systems of smart farm performed in our country and artificial neural network technology trends.

  • PDF

Object Detection-Based Cloud System: Efficient Disease Monitoring with Database (객체 검출 기반 클라우드 시스템 : 데이터베이스를 통한 효율적인 병해 모니터링)

  • Jongwook Si;Junyoung Kim;Sungyoung Kim
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.4
    • /
    • pp.210-219
    • /
    • 2023
  • The decline in the rural populace and an aging workforce have led to fatalities due to worsening environments and hazards within vinyl greenhouses. Therefore, it is necessary to automate crop cultivation and disease detection system in greenhouses to prevent labor loss. In this paper, an object detection-based model is used to detect diseased crop in greenhouses. In addition, the system proposed configures the environment of the artificial intelligence model in the cloud to ensure stability. The system captures images taken inside the vinyl greenhouse and stores them in a database, and then downloads the images to the cloud to perform inference based on Yolo-v4 for detection, generating JSON files for the results. Analyze this file and send it to the database for storage. From the experimental results, it was confirmed that disease detection through object detection showed high performance in real environments like vinyl greenhouses. It was also verified that efficient monitoring is possible through the database