• Title/Summary/Keyword: cucumber cultivars

Search Result 58, Processing Time 0.033 seconds

Comparison of Seed Viability Among 42 Species Stored in a Genebank

  • Lee, Ho-Sun;Jeon, Young-Ah;Lee, Young-Yi;Lee, Sok-Young;Kim, Yeon-Gyu
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.58 no.4
    • /
    • pp.432-438
    • /
    • 2013
  • This study was conducted to compare seed viability among 42 species after ten years of storage in the midterm storage complex ($4^{\circ}C$, 30-40% RH) at the National Agrobiodiversity Center (NAC) Korean genebank maintained by the Rural Development Administration (RDA), Republic of Korea and to suggest the relative seed longevity and suitable monitoring intervals. The germination data from initial tests and after ten years of storage were compared to measure changes in viability during storage. The decline in seed viability varied greatly among seeds from -11.5% for Triticum sp. to 80% for melon. Coriander, crowndaisy, safflower, cosmos, Chinesebellflower, waxgourd, melon, castorbean, Welch-onion, hollyhock, wild barley, and tallfescue showed significant decreases in viability of 34.2%, 73.4%, 36.5%, 30.0%, 40.2%, 71.3%, 80.0%, 65.9%, 45.5%, 51.4%, 53.0%, and 33.5%, respectively. Gardenpea, soybean, perilla, onion, wild rice, Italian-ryegrass, and pepper showed a 15-30% decline in viability, while the viability of morningglory, adzukibean, maize, and Capsicum sp. decreased by 15% to 5%. Chicory, radish, Chinese-cabbage, bottlegourd, watermelon, cucumber, pumpkin, Cucurbita sp., groundnut, kidneybean, clubwheat, sesame, wheat, Triticum sp., rice, barley, orchardgrass, buckwheat, and wild tomato showed changes in viability of <5%. The changes in storage viability also varied within families. The wild types of rice and barley showed rapid viability loss and presented different aspects from cultivars. Since seed viability of species, classified as index 1 or 2, showed germination losses >15% after ten years of storage, a viability test should be conducted with five year intervals, while species with germination loss of <15% (in index 3 or 4) can be retested at ten year intervals.

An infectious virus isolated from soybeans (대두위축병원 바이러스에 관한 연구)

  • Lee Soon Hyung;Lee Min Hyo;Tochihara Hiroshi
    • Korean journal of applied entomology
    • /
    • v.19 no.3 s.44
    • /
    • pp.175-179
    • /
    • 1980
  • Soybean stunt virus (SSV) was newly isolated in Korea from naturally infected soybeans (Glycine max). The main symptoms caused by this virus on soybean cultivars are crinkling, mild mottling and reduction in plant size. This virus induced local lesion on the inoculated leaves of Chenopodium amaranticolor, C quinoa and Vigna sinensis, and mosaic symptoms on Nicotiana tabacum (Bright yellow, KY-57). The virus was inactivated at 60C, and was infectious at dilution of $10^3$. Extract juice became infective 3 days later at room temperature. The virus was transmitted by green peach apid (Myzus persicae). This virus closely is related serologically to cucumber mosaic virus. The virus particles observed in the electron microscopy were spherical types of 30mm in diameter.

  • PDF

Development of Fluidigm SNP Type Genotyping Assays for Marker-assisted Breeding of Chili Pepper (Capsicum annuum L.)

  • Kim, Haein;Yoon, Jae Bok;Lee, Jundae
    • Horticultural Science & Technology
    • /
    • v.35 no.4
    • /
    • pp.465-479
    • /
    • 2017
  • Chili pepper (Capsicum annuum L.) is an economically important horticultural crop in Korea; however, various diseases, including Phytophthora root rot, anthracnose, powdery mildew, Cucumber mosaic virus (CMV), Pepper mild mottle virus (PMMoV), and Pepper mottle virus (PepMoV), severely affect their productivity and quality. Therefore, pepper varieties with resistance to multiple diseases are highly desired. In this study, we developed 20 SNP type assays for three pepper populations using Fluidigm nanofluidic dynamic arrays. A total of 4,608 data points can be produced with a 192.24 dynamic array consisting of 192 samples and 24 SNP markers. The assays were converted from previously developed sequence-tagged-site (STS) markers and included markers for resistance to Phytophthora root rot (M3-2 and M3-3), anthracnose (CcR9, CA09g12180, CA09g19170, CA12g17210, and CA12g19240), powdery mildew (Ltr4.1-40344, Ltr4.2-56301, and Ltr4.2-585119), bacterial spot (Bs2), CMV (Cmr1-2), PMMoV (L4), and PepMoV (pvr1 and pvr2-123457), as well as for capsaicinoids content (qcap3.1-40134, qcap6.1-299931, qcap6.1-589160, qdhc2.1-1335057, and qdhc2.2-43829). In addition, 11 assays were validated through a comparison with the corresponding data of the STS markers. Furthermore, we successfully applied the assays to commercial $F_1$ cultivars and to our breeding lines. These 20 SNP type assays will be very useful for developing new superior pepper varieties with resistance to multiple diseases and a higher content of capsaicinoids for increased pungency.

Occurrence of Virus Diseases on Major Crops in 2009 (2009년 우리나라 주요 작물 바이러스병 발생 상황)

  • Choi, Hong-Soo;Lee, Su-Heon;Kim, Mi-Kyeong;Kwak, Hae-Ryun;Kim, Jeong-Soo;Cho, Jeom-Deog;Choi, Gug-Seoun
    • Research in Plant Disease
    • /
    • v.16 no.1
    • /
    • pp.1-9
    • /
    • 2010
  • Among the plant specimens requested from agricultural actual places of farmers, Agency of agricultural extension services and so forth for the diagnosis of plant virus diseases in 2009, the rate of crop types was 87.5% for vegetables, 4.0% for upland crops and 3.5% for orchids. In vegetables, the crops damaged severely by viral diseases were red pepper and tomato by the infection rate of 51.6% and 26.5%, orderly. Virus species occurring vegetables were 19 and the economically important viruses were Cucumber mosaic virus (CMV), Tomato spotted wilt virus (TSWV), Tomato yellow leaf curl virus (TYLCV), Pepper mild mottle virus (PMMoV) with the infection rate of 33.2%, 16.9%, 16.1% and 7.4%, respectively. Rice stripe virus (RSV) occurred at the whole areas of west coast in Korea in 2009, and its incidence was 14.2% mainly on the susceptible cultivars and yield loss was estimated up to 50%. TYLCV was spread at 34 areas of Si and/or Gun, 22 areas in 2009 and 12 in 2008. Distribution of TSWV was expanded newly in 6 areas of Si and/or Gun including Gangryung, Gangwondo in 2009, and its occurrence areas were 23 Si and/or Gun after first incidence at Anyang area in 2004. Tomato bushy stunt virus (TBSV) was incited newly at Gimcheon area in 2009 with the infection rate of 65.2%, and its soil transmission rate was 55.0% in average.

Survey of Viral Diseases Occurrence on Major Crops in 2007 (2007년 우리나라 주요 작물 바이러스병 발생 상황)

  • Kim, Jeong-Soo;Lee, Su-Heon;Choi, Hong-Soo;Choi, Guk-Sun;Cho, Jeom-Deog;Chung, Bong-Nam
    • Research in Plant Disease
    • /
    • v.14 no.1
    • /
    • pp.1-9
    • /
    • 2008
  • The severe damage induced by the important viruses of Rice stripe virus (RSV), Cucumber green mottle mosaic virus (CGMMV), Melon necrotic spot virus (MNSV), Tomato spotted wilt virus (TSWV) and Tomato bushy stunt virus (TBSV) was described on major crops in Korea. In 2007, the plot incidence rate of RSV was 100% on the precocious rice cultivars at the Western coastal provinces of Gyeonggido, Chungcheongnamdo, Jellabugdo and Jellanamdo, and Jejudo. RSV occurred in 2,441 ha with incidence rate of 70% over at 5 areas of Seocheon, Seosan, Boryung, Hongsung and Buyou in Chungcheongnamdo. At 4 areas of Buan, Gimje, Gunsan and Gochang in Jellabukdo, RSV occurred in 2.016 ha. CGMMV occurred on watermelon in 4.6 ha at Cheongyang area, and its outbreak was also 890 ha on oriental melon for 120 farmers with the incidence area of 23% against total cultivation areas of Seongju. MNSV was recorded firstly on watermelon in 2006 at Andong and it spread to 3 areas of Hapcheon, Gochang and Yanggu. TSWV occurred firstly at Danggin in Chungcheongnamdo in 2005. TSWV in 2006 spread to 6 areas; Taian, Hongsung and Seosan in Chungcheongnando, Namwon in Jellabukdo, and Sunchon and Kwangju in Jellanamdo. In 2007, TSWV covered 17 areas of western and southern parts; the 5 area including Taian in Chungcheongnamdo, Kwangju in Jellanamdo, Bucheon in Gyunggido, and so forth. TBSV was described firstly on table tomato at Sacheon in Kyungsangnamdo in 2004. TBSV occurred on cherry tomato at Chungju in 2006 and on table tomato at Busan area.

Development of an Efficient Method of Screening for Watermelon Plants Resistant to Fusarium oxysporum f. sp. niveum (수박 덩굴쪼김병에 대한 효율적인 저항성 검정법 개발)

  • Jo, Eun Ju;Lee, Ji Hyun;Choi, Yong Ho;Kim, Jin-Cheol;Choi, Gyung Ja
    • Horticultural Science & Technology
    • /
    • v.33 no.3
    • /
    • pp.409-419
    • /
    • 2015
  • This study was conducted to establish an efficient screening method for watermelon plants resistant to Fusarium wilt (FW), which is caused by Fusarium oxysporum f. sp. niveum (Fon). An HA isolate was prepared from a wilted watermelon plant in Haman-gun and identified as F. oxysporum f. sp. niveum based on morphological characteristics, molecular analyses of ITS (internal transcribed spacer) and TEF (translation elongation factor $1{\alpha}$) sequences, and host specificity on cucurbits including watermelon, melon, oriental melon, and cucumber. The assay for disease response of watermelon differentials indicated that the HA isolate was race 0. Among seven liquid media tested, the highest amount of Fon spores was produced from V8-juice broth, which was selected as a medium for mass production of Fon. The disease assay for 21 watermelon and 11 watermelon-rootstock cultivars demonstrated that 20 watermelon cultivars except for 'Soknoranggul' were susceptible; 'Soknoranggul' was moderately resistant. All the tested rootstock cultivars were highly resistant to the HA isolate. The evaluation of disease development depending on various conditions suggested that an efficient screening method for FW resistance in watermelon plants is to dip the roots of 10-day-old seedlings in spore suspension of $1.0{\times}10^5-1.0{\times}10^6conidia{\cdot}mL^{-1}$ for 30 min., to transplant the seedlings to plastic pots with a fertilized soil, and then to cultivate the plants at $25^{\circ}C$ for 3 weeks.

Transgenic Tomato Plants That Overexpress Superoxide Dismutase in Fruits (토마토 과실에서 Superoxide Dismutase를 고발현하는 형질전환 식물체)

  • Park, Eun-Jeong;Lee, Haeng-Soon;Kwon, Suk-Yoon;Choi, Kwan-Sam;Kwak, Sang-Soo
    • Journal of Plant Biotechnology
    • /
    • v.29 no.1
    • /
    • pp.7-13
    • /
    • 2002
  • Superoxide dismutase (SOD) plays an important role in cellular defense against oxidative stress in plants. We have developed transgenic tomato plants overexpressing a cassava SOD in fruits. Three transgenic tomato plants (one from cv. Pink forcer and two from cv. Koko) using a new vector system, ASOp :: . mSOD1/pBI101, harboring ascorbate oxidase promoter (ASOp) expressing dominantly in cucumber fruits, CuZnSOD cDNA (mSOD1) isolated from cultured cells of cassava, and nptll gene as a selectable marker were successfully developed. SOD specific activity (units/mg protein) in transgenic fruits of both cultivars was increased with maturation of the fruits. SOD specific activity of well-mature fruits in transgenic Pink forcer and Koko showed approximately 1.6 and 2.2 times higher than control fruits, respectively. The strength of SOD isoenzyme bands well reflected the SOD activity during the fruit maturation. These results suggested that SOD gene was properly introduced into tomato fruits in a fruit-dominant expression manner by ASO promoter.

Characterization of Sources of Resistance to Bacterial Spot in Capsicum Peppers (고추 세균성점무늬병 저항성 유전자원과 그 주요 특성)

  • Byeon, Si-Eun;Abebe, Alebel Mekuriaw;Jegal, Yoon-Hyuk;Wai, Khin Pa Pa;Siddique, Muhammad Irfan;Mo, Hwang-Sung;Yoo, Hee Ju;Jang, Kil-Su;Hwang, Ji-Eun;Jeon, Su-Gyeong;Lee, Su-Heon;Kim, Byung-Soo
    • Horticultural Science & Technology
    • /
    • v.34 no.5
    • /
    • pp.779-789
    • /
    • 2016
  • A total of 33 accessions of pepper (Capsicum spp.), including previously reported and newly discovered sources of resistance to bacterial spot caused by Xanthomonas euvesicatoria, were evaluated for their resistance to bacterial spot. The selected accessions were then grown and their horticultural characteristics were recorded. In a test for hypersensitive resistance (HR) to four races (P1, P3, P7, P8) of the pathogen found in Korea, KC00939 and Chilbok No.2, which carry the Bs2 gene, exhibited a hypersensitive response to all four races, as expected. Chilbok No.3, which carries the Bs3 gene, showed a hypersensitive reaction to race 1 and 7, as expected. KC00939 exhibited a high ASTA color value and tolerance to multiple infections from a viral complex of Cucumber mosaic virus (CMV) and Broad bean wilt virus (BBWV). Thus, this accession represents a promising genetic resource for breeding cultivars with multiple disease resistance and strong red coloration. KC01327, KC01617, KC01015, KC01760, KC01779, KC01137, KC01328, KC01006, KC00127, KC01704, and KC00995 did not exhibit hypersensitivity but showed a high level of general resistance when evaluated by spray inoculation. KC01617, KC01760, KC01779, KC01137, KC01704, and KC01777 are newly identified sources of resistance to bacterial spot. The previously and newly identified sources of resistance to bacterial spot evaluated in this study, including information about their resistance to CMV and BBWV complex in the field, the contents of pungent and sweet taste components, and the color values of dry fruits, will be useful for breeding pepper cultivars with resistance to bacterial spot.