DOI QR코드

DOI QR Code

Transgenic Tomato Plants That Overexpress Superoxide Dismutase in Fruits

토마토 과실에서 Superoxide Dismutase를 고발현하는 형질전환 식물체

  • Park, Eun-Jeong (Plant Cell Biotechnology Laboratory, Korea Research Institute of Bioscience and Biotechnology) ;
  • Lee, Haeng-Soon (Plant Cell Biotechnology Laboratory, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kwon, Suk-Yoon (Plant Cell Biotechnology Laboratory, Korea Research Institute of Bioscience and Biotechnology) ;
  • Choi, Kwan-Sam (Department of Agricultural Biology, Chungnam National University) ;
  • Kwak, Sang-Soo (Plant Cell Biotechnology Laboratory, Korea Research Institute of Bioscience and Biotechnology)
  • 박은정 (한국생명공학연구원 식물세포공학연구실) ;
  • 이행순 (한국생명공학연구원 식물세포공학연구실) ;
  • 권석윤 (한국생명공학연구원 식물세포공학연구실) ;
  • 최관삼 (충남대학교 농생물학과) ;
  • 곽상수 (한국생명공학연구원 식물세포공학연구실)
  • Published : 2002.03.01

Abstract

Superoxide dismutase (SOD) plays an important role in cellular defense against oxidative stress in plants. We have developed transgenic tomato plants overexpressing a cassava SOD in fruits. Three transgenic tomato plants (one from cv. Pink forcer and two from cv. Koko) using a new vector system, ASOp :: . mSOD1/pBI101, harboring ascorbate oxidase promoter (ASOp) expressing dominantly in cucumber fruits, CuZnSOD cDNA (mSOD1) isolated from cultured cells of cassava, and nptll gene as a selectable marker were successfully developed. SOD specific activity (units/mg protein) in transgenic fruits of both cultivars was increased with maturation of the fruits. SOD specific activity of well-mature fruits in transgenic Pink forcer and Koko showed approximately 1.6 and 2.2 times higher than control fruits, respectively. The strength of SOD isoenzyme bands well reflected the SOD activity during the fruit maturation. These results suggested that SOD gene was properly introduced into tomato fruits in a fruit-dominant expression manner by ASO promoter.

Superoxide dismutase (SOD)를 과실에서 고발현시킨 형질전환 토마토 (서광과 꼬꼬)를 개발하였다. 카사바 배양세포에서 분리한 CuZnSOD (mSOD1)를 과실에 우세적으로 발현하는 ascorbate oxidase promoter (ASOp)를 이용하여 ASOp :: mSOD1/pBI101 벡터를 제작한 후 Agrobacterium 매개로 자엽 절편체를 형질전환하였다. Kanamycin 저항성 식물체를 기관발생 경로로 재분화시킨 후 Southern 분석으로 형질전환을 확인하였다. 서광과 꼬꼬 토마토의 형질전환체와 대조구 식물체의 과실을 성숙 단계별로 분류하여 단백질 함량과 SOD 비활성도 (units/mg protein)를 측정한 결과, 단백질 함량은 열매가 익은 단계로 갈수록 점점 감소하여 완전히 익은 단계에서 가장 낮았다. SOD 비활성도는 형질전환 토마토의 열매의 모든 단계에서 대조구보다 높았으며 완전히 성숙한 과실에서 가장 높았다. 성숙한 형질전환 서광과 꼬꼬 과실에서 SOD 비활성도는 비형질전환의 것보다 각각 약 1.6배와 약 2.2배 높았다. SOD isoenzyme gel 분석에서 도입한 mSOD1로 추정되는 CuZnSOD 밴드가 형질전환체에서 과실 성숙에 따라 강하게 발현되었다. 이상의 결과로서 ASO promoter에 의해 SOD 유전자가 토마토 과실에 특이적으로 발현됨이 확인되었다.

Keywords

References

  1. Allen RD (1995) Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol 107:1049-1054 https://doi.org/10.1104/pp.107.4.1049
  2. Alscher RQ, Hess JL (1993) Antioxidants in Higher Plants. CRC Press, Boca Raton, pp 1-174
  3. Asemota HN (1995) A fast, simple, and efficient miniscale method for the preparation of DNA from tissues of yam (Dioscorea spp.). Plant Mol Biol Rep 1: 19-21 https://doi.org/10.1007/BF02712670
  4. Bannister JV, Bannister WH, Rotilio G (1987) Aspects of the structure, function and applications of superoxide dismutase. CRC Crit Rev Biochem 22: 111-180 https://doi.org/10.3109/10409238709083738
  5. Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276-287 https://doi.org/10.1016/0003-2697(71)90370-8
  6. Bradford MM (1976) A rapid and sensitive method for the quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  7. Cohen G (1988) Oxygen radicals and Parkinson,s disease. In Oxygen Radicals and Tissue Injury' (Halliwell, B., ed). Federation of American Societies for Expermental Biology, Bethesda, MD:130-135
  8. Fridovich I (1982) Measuring the activity of superoxide dismutates: an embarrassment of riches. In LW Oberly, ed, Superoxide Dismutase, Vol 1. CRC Press, Boca Raton, FL, pp 69-77
  9. Gambley RL, Dodd WA (1991) The influence of cotyledons axillary and adventitious shoot production from cotyledonary nodes of Cucumis sativus L (cucumber). J Exp Bot 32:1131-1135
  10. Goddijin OJM, Pen J (1995) Plants as bioreactors. TIBTECH 13:379-387 https://doi.org/10.1016/S0167-7799(00)88985-4
  11. Haber F, Weiss J (1934) The catalytic decomposition of hydrogen peroxide by iron salts. Proc R Soc Lond A 147:332-351 https://doi.org/10.1098/rspa.1934.0221
  12. Hanson B, Engler D, Moy Y, Newman B, Ralston E, Gutterson N. (1999) A simple method to enrich an Agrobacterium-trans-formed population for plants containing only T-DNA sequences. Plant J 19:727-34 https://doi.org/10.1046/j.1365-313x.1999.00564.x
  13. Inze D, Van Montagu M (1995) Oxidative stress in plants. Curr Opin Biotechnol 6:153-158 https://doi.org/10.1016/0958-1669(95)80024-7
  14. Kim JH, Oh SY, Lee HS, Jo MH, Lee EM, Woo IS, Kwak SS (1998) Expression of pea superoxide dismutase gene in transgenic cucumber (Cucumis sativus L.) plants. Korean J. Plant Tissue Culture 25:201-206
  15. Lee HS, Kim KY, You SH, Kwon SY, Kwak SS (1999) Molecular characterization and expression of a cDNA encoding copper/zinc superoxide dismutase from cultured cells of cassava (Manihot escuIenta Crantz). Mol Gen Genet 262:807-814
  16. Mason HS, Arntzen CJ (1995) Transgenic plants as vaccine production systems. TIBTECH 13: 388-392 https://doi.org/10.1016/S0167-7799(00)88986-6
  17. McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymatic function for erythrocuprein (Hemocuprein). J Biol Chem 244:6049-6055
  18. McKersie BD, Chen Y, De Beus M, Bowley SR, Bowler C (1993) Superoxide dismutase engances tolerance of freezing stress in transgenic alfalfa (Medicago sativa L.). Plant Physiol 103:1155-1163 https://doi.org/10.1104/pp.103.4.1155
  19. Michelmore R (1996) Big news for plant transformation. Nature Biotechnol. 14 (13):1653-4
  20. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  21. Ohkawa J, Ohya T, Ito T, Nozawa H, Nishi Y, Okada N, Yoshida K, Takano M, Shinmyo A (1994) Structure of the genomic DNA encoding cucumber ascorbate oxidase and its expreesion in transgenic plants. Plant Cell Rep 13:481-488
  22. Perl A, Perl-Treves R, Galili S, Aviv D, Shalgi E, Malkin S, Galun E (1993) Enhanced oxidative-stress defence in transgenic potato expression tomato Cu, Zn superoxide dismutases. Theor Appl Genet 85:568-576
  23. Pfitzner AJ (1998) Transformation of tomato. Methods Mol Biol 81:359-63
  24. Sen Gupta A, Webb RP, Holaday AS, Allen RD (1993) Overexpressin of superoxide dismutases protects plants from oxidative stress. Plant Physiol 103:1067-1073 https://doi.org/10.1104/pp.103.4.1067
  25. Tepperman JM, Dunsmuir P (1990) Transformed plants with elevated levels of chloroplastic SOD are not more resistant to superoxide toxicity. Plant Mol Biol 14:501-511 https://doi.org/10.1007/BF00027496