• Title/Summary/Keyword: cubic equation

Search Result 273, Processing Time 0.032 seconds

Change of Concentration of Hormones and Metabolic Materials in Serum by Age in Hanwoo (한우 혈청에서 호르몬 및 대사물질 농도들의 연령에 따른 변화에 관한 연구)

  • 전기준;김종복;최재관;이창우;황정미;김형철;양부근;박춘근;나기준
    • Journal of Embryo Transfer
    • /
    • v.18 no.3
    • /
    • pp.215-225
    • /
    • 2003
  • This study was carried out to investigate the change of blood compositions by age in Hanwoo, and a total of 866 of Hanwoo, which consisted with 638 of steer and 228 of bulls, were used to measure serum concentrations. A multiple regression equation was estimated with collection age and blood composition as independent and dependent variables, respectively. Complicated regression equations for blood compositions in steer and bulls were IGF-I(cubic), calcium (linear), and IP(linear). Linear and cubic equations were fitted to testosterone in steer and creatinine in bulls, respectively. A cubic equation in steer and linear equation in bulls were fitted to HDLC. Equations of quadratic in steer and cubic in bulls were fitted to concentration of triglyceride, globulin, and A/G ratio. BUN was fitted by equations of cubic in steer and quadratic in bulls. TP and albumin were fitted by equations of quadratic in steer and linear in bulls. A cubic regression equation did not explain the change of cortisol by age in steer and bulls. A cubic regression equation did explain the change of glucose by age in steer, but not in bulls. Higher R-square values (R-SQUARE>0.1) were estimated to IGF-1, albumin, creatinine, Inorganic phosphorous(IP) and HDLC in steer, and testosterone, IGF-I, TP, albumin, glucose, creatinine, IP, and HDLC in bulls for the fitted regression equations of blood compositions. Therefore, IGF-I, albumin, creatinine, IP, and HDLC were regarded as comparatively large variation by age in steer and bulls.

Density Measurement of Liquid Mixture and Estimation of Excess Molar Volume by A Cubic Equation of State (액체혼합물의 밀도 측정과 3차 상태방정식에 의한 과잉 몰부피의 예측)

  • Kim, Jung-Min;Bae, Hyo-Kwang
    • Korean Chemical Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.637-640
    • /
    • 2005
  • The density of polar-nonpolar liquid mixtures composed of methyl tert-butyl ether(MTBE) and 2,2,4-trimethylpentane, and methyl ethyl ketone (MEK) and 2,2,4-trimethylpentane, and the density of polar-polar liquid mixture of MTBE and MEK were measured by densitometer at 278.15 K, 288.15 K and 298.15 K, respectively. The excess molar volume of the binary systems calculated from the measured density was shown good agreement with the calculated one by the cubic Peng-Robinson- Stryjek-Vera (PRSV) equation of state together with Huron-Vidal mixing rule and it confirmed that the cubic PRSV equation of state could be used in the molar volume calculation of polar mixture.

The Cubic-Interpolated Pseudo-Particle Lattice Boltzmann Advection-Diffusion Model (이류확산 방정식 계산을 위한 입방보간유사입자 격자볼츠만 모델)

  • Mirae, Kim;Binqi, Chen;Kyung Chun, Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.3
    • /
    • pp.74-85
    • /
    • 2022
  • We propose a Cubic-Interpolated Pseudo-Particle Lattice Boltzmann method (CIP-LBM) for the convection-diffusion equation (CDE) based on the Bhatnagar-Gross-Krook (BGK) scheme equation. The CIP-LBM relies on an accurate numerical lattice equilibrium particle distribution function on the advection term and the use of a splitting technique to solve the Lattice Boltzmann equation. Different schemes of lattice spaces such as D1Q3, D2Q5, and D2Q9 have been used for simulating a variety of problems described by the CDE. All simulations were carried out using the BGK model, although another LB scheme based on a collision term like two-relation time or multi-relaxation time can be easily applied. To show quantitative agreement, the results of the proposed model are compared with an analytical solution.

A study on derivation of root's formulas of cubic and quartic equation by method analogy (방법유추를 통한 3차와 4차 방정식의 근의 공식 유도)

  • Lyou, Ik-Seung;Shin, Hyun-Yong;Han, In-Ki
    • Communications of Mathematical Education
    • /
    • v.22 no.4
    • /
    • pp.505-514
    • /
    • 2008
  • In this paper we study on derivation of formulas for roots of quadratic equation, cubic equation, and quartic equation through method analogy. Our argument is based on the norm form of polynomial. We also present some mathematical content knowledge related with main discussion of this article.

  • PDF

A Study on the Pedagogical Application of Omar Khayyam's Geometric Approaches to Cubic Equations (오마르 카얌(Omar Khayyam)이 제시한 삼차방정식의 기하학적 해법의 교육적 활용)

  • Ban, Eun Seob;Shin, Jaehong;Lew, Hee Chan
    • School Mathematics
    • /
    • v.18 no.3
    • /
    • pp.589-609
    • /
    • 2016
  • In this study, researchers have modernly reinterpreted geometric solving of cubic equations presented by an arabic mathematician, Omar Khayyam in medieval age, and have considered the pedagogical significance of geometric solving of the cubic equations using two conic sections in terms of analytic geometry. These efforts allow to analyze educational application of mathematics instruction and provide useful pedagogical implications in school mathematics such as 'connecting algebra-geometry', 'induction-generalization' and 'connecting analogous problems via analogy' for the geometric approaches of cubic equations: $x^3+4x=32$, $x^3+ax=b$, $x^3=4x+32$ and $x^3=ax+b$. It could be possible to reciprocally convert between algebraic representations of cubic equations and geometric representations of conic sections, while geometrically approaching the cubic equations from a perspective of connecting algebra and geometry. Also, it could be treated how to generalize solution of cubic equation containing variables from geometric solution in which coefficients and constant terms are given under a perspective of induction-generalization. Finally, it could enable to provide students with some opportunities to adapt similar solving procedures or methods into the newly-given cubic equation with a perspective of connecting analogous problems via analogy.

Understanding Variables and Enhancing the Level of Generalization in Problem Solving Utilized Dynamic Geometry Environment (동적 기하 환경을 활용한 문제 해결 과정에서 변수 이해 및 일반화 수준 향상에 관한 사례연구)

  • Ban, Eun Seob;Lew, Hee Chan
    • Journal of Educational Research in Mathematics
    • /
    • v.27 no.1
    • /
    • pp.89-112
    • /
    • 2017
  • In this study we have analyzed processes of generalization in which students have geometrically solved cubic equation $x^3+ax=b$, regarding geometrical solution of cubic equation $x^3+4x=32$ as examples. The result of this research indicate that students could especially re-interpret the geometric solution of the given cubic equation via dynamically understanding the variables in dynamic geometry environment. Furthermore, participants could simultaneously re-interpret the given geometric solution and then present a different geometric solutions of $x^3+ax=b$, so that the level of generalization could be improved. In conclusion, the study could provide useful pedagogical implications in school mathematics that the dynamic geometry environment performs significant function as a means of students-centered exploration when understanding variables and enhancing the level of generalization in problem solving.

A simple method to compute a periodic solution of the Poisson equation with no boundary conditions

  • Moon Byung Doo;Lee Jang Soo;Lee Dong Young;Kwon Kee-Choon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.286-290
    • /
    • 2005
  • We consider the poisson equation where the functions involved are periodic including the solution function. Let $R=[0,1]{\times}[0,l]{\times}[0,1]$ be the region of interest and let $\phi$(x,y,z) be an arbitrary periodic function defined in the region R such that $\phi$(x,y,z) satisfies $\phi$(x+1, y, z)=$\phi$(x, y+1, z)=$\phi$(x, y, z+1)=$\phi$(x,y,z) for all x,y,z. We describe a very simple method for solving the equation ${\nabla}^2u(x, y, z)$ = $\phi$(x, y, z) based on the cubic spline interpolation of u(x, y, z); using the requirement that each interval [0,1] is a multiple of the period in the corresponding coordinates, the Laplacian operator applied to the cubic spline interpolation of u(x, y, z) can be replaced by a square matrix. The solution can then be computed simply by multiplying $\phi$(x, y, z) by the inverse of this matrix. A description on how the storage of nearly a Giga byte for $20{\times}20{\times}20$ nodes, equivalent to a $8000{\times}8000$ matrix is handled by using the fuzzy rule table method and a description on how the shape preserving property of the Laplacian operator will be affected by this approximation are included.