• Title/Summary/Keyword: cryptographic system

Search Result 269, Processing Time 0.02 seconds

A Study on the Operation Components for Elliptic Curve Cryptosystem based on a Real Number Field (실수체 기반 타원곡선 암호시스템의 연산항 연구)

  • Woo, Chan-Il;Goo, Eun-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.2
    • /
    • pp.795-800
    • /
    • 2012
  • Recently, as communication is evolved by leaps and bounds through wired/wireless networks, variety of services are routinely made through communication networks. Accordingly, technology that is for protecting data and personal information is required essentially, and study of security technology is actively being make progress to solve these information protection problems. In this paper, to expand selection scope of the key of elliptic curve cryptography, arithmetic items of real number based elliptic curve algorithm among various cryptographic algorithms was studied. The result of an experiment, we could know that elliptic curve cryptography using the real number can choose more various keys than existing elliptic curve cryptography using integer and implement securer cryptographic system.

DCT and Homomorphic Encryption based Watermarking Scheme in Buyer-seller Watermarking Protocol

  • Seong, Teak-Young;Kwon, Ki-Chang;Lee, Suk-Hwan;Moon, Kwang-Seok;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.12
    • /
    • pp.1402-1411
    • /
    • 2014
  • Buyer-seller watermarking protocol is defined as the practice of imperceptible altering a digital content to embed a message using watermarking in the encryption domain. This protocol is acknowledged as one kind of copyright protection techniques in electronic commerce. Buyer-seller watermarking protocol is fundamentally based on public-key cryptosystem that is operating using the algebraic property of an integer. However, in general usage, digital contents which are handled in watermarking scheme mostly exist as real numbers in frequency domain through DCT, DFT, DWT, etc. Therefore, in order to use the watermarking scheme in a cryptographic protocol, digital contents that exist as real number must be transformed into integer type through preprocessing beforehand. In this paper, we presented a new watermarking scheme in an encrypted domain in an image that is based on the block-DCT framework and homomorphic encryption method for buyer-seller watermarking protocol. We applied integral-processing in order to modify the decimal layer. And we designed a direction-adaptive watermarking scheme by analyzing distribution property of the frequency coefficients in a block using JND threshold. From the experimental results, the proposed scheme was confirmed to have a good robustness and invisibility.

An Efficient Hardware Implementation of AES Rijndael Block Cipher Algorithm (AES Rijndael 블록 암호 알고리듬의 효율적인 하드웨어 구현)

  • 안하기;신경욱
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.12 no.2
    • /
    • pp.53-64
    • /
    • 2002
  • This paper describes a design of cryptographic processor that implements the AES (Advanced Encryption Standard) block cipher algorithm, "Rijndael". An iterative looping architecture using a single round block is adopted to minimize the hardware required. To achieve high throughput rate, a sub-pipeline stage is added by dividing the round function into two blocks, resulting that the second half of current round function and the first half of next round function are being simultaneously operated. The round block is implemented using 32-bit data path, so each sub-pipeline stage is executed for four clock cycles. The S-box, which is the dominant element of the round block in terms of required hardware resources, is designed using arithmetic circuit computing multiplicative inverse in GF($2^8$) rather than look-up table method, so that encryption and decryption can share the S-boxes. The round keys are generated by on-the-fly key scheduler. The crypto-processor designed in Verilog-HDL and synthesized using 0.25-$\mu\textrm{m}$ CMOS cell library consists of about 23,000 gates. Simulation results show that the critical path delay is about 8-ns and it can operate up to 120-MHz clock Sequency at 2.5-V supply. The designed core was verified using Xilinx FPGA board and test system.

A Fault Injection Attack on the For Statement in AES Implementation (AES에 대한 반복문 오류주입 공격)

  • Park, Jea-Hoon;Bae, Ki-Seok;Oh, Doo-Hwan;Moon, Sang-Jae;Ha, Jae-Cheol
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.20 no.6
    • /
    • pp.59-65
    • /
    • 2010
  • Since an attacker can occur an error in cryptographic device during encryption process and extract secret key, the fault injection attack has become a serious threat in chip security. In this paper, we show that an attacker can retrieve the 128-bits secret key using fault injection attack on the for statement of final round key addition in AES implementation. To verify possibility of our proposal, we implement the AES system on ATmega128 microcontroller and try to inject a fault using laser beam. As a result, we can extract 128-bits secret key through just one success of fault injection.

A White-box ARIA Implementation (화이트박스 ARIA 구현)

  • Hong Tae Kim
    • Convergence Security Journal
    • /
    • v.24 no.1
    • /
    • pp.69-76
    • /
    • 2024
  • The white-box implementation is a cryptographic technique used to protect the secret key of a cryptographic system. It is primarily employed for digital rights management for music and videos. Since 2002, numerous white-box implementations have been developed to ensure secure digital rights management. These have been applied to AES and DES. ARIA, a 128-bit block cipher with an involution substitution and permutation network (SPN), was selected as a South Korean standard in 2004. In this paper, we propose the first white-box ARIA implementation. Our implementation consists of 7,696 lookup tables, with a total size of 1,984 KB. We demonstrate that it also has considerable white-box diversity and white-box ambiguity from a security perspective.

Incorporating RSA with a New Symmetric-Key Encryption Algorithm to Produce a Hybrid Encryption System

  • Prakash Kuppuswamy;Saeed QY Al Khalidi;Nithya Rekha Sivakumar
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.1
    • /
    • pp.196-204
    • /
    • 2024
  • The security of data and information using encryption algorithms is becoming increasingly important in today's world of digital data transmission over unsecured wired and wireless communication channels. Hybrid encryption techniques combine both symmetric and asymmetric encryption methods and provide more security than public or private key encryption models. Currently, there are many techniques on the market that use a combination of cryptographic algorithms and claim to provide higher data security. Many hybrid algorithms have failed to satisfy customers in securing data and cannot prevent all types of security threats. To improve the security of digital data, it is essential to develop novel and resilient security systems as it is inevitable in the digital era. The proposed hybrid algorithm is a combination of the well-known RSA algorithm and a simple symmetric key (SSK) algorithm. The aim of this study is to develop a better encryption method using RSA and a newly proposed symmetric SSK algorithm. We believe that the proposed hybrid cryptographic algorithm provides more security and privacy.

Enhanced Mobile Agent Scheme for RFID Privacy Protection (RFID 프라이버시 보호를 위한 향상된 모바일 에이전트 기법)

  • Kim, Soo-Cheol;Yeo, Sang-Soo;Kim, Sung-Kwon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.2C
    • /
    • pp.208-218
    • /
    • 2008
  • We are sure that RFID system should be a widely used automatic identification system because of its various advantages and applications. However, many people know that invasions of privacy in RFID system is still critical problem that makes it difficult to be used. Many works for solving this problem have focused on light-weight cryptographic functioning in the RFID tag. An agent scheme is another approach that an agent device controls communications between the tag and the reader for protecting privacy. Generally an agent device has strong security modules and enough capability to process high-level cryptographic protocols and can guarantees consumer privacy. In this paper, we present an enhanced mobile agent for RFID privacy protection. In enhanced MARP, we modified some phases of the original MARP to reduce the probability of successful eavesdropping and to reduce the number of tag's protocol participation. And back-end server can authenticate mobile agents more easily using public key cryptography in this scheme. It guarantees not only privacy protection but also preventing forgery.

VLIS Design of OCB-AES Cryptographic Processor (OCB-AES 암호 프로세서의 VLSI 설계)

  • Choi Byeong-Yoon;Lee Jong-Hyoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.8
    • /
    • pp.1741-1748
    • /
    • 2005
  • In this paper, we describe VLSI design and performance evaluation of OCB-AES crytographic algorithm that simulataneously provides privacy and authenticity. The OCB-AES crytographic algorithm sovles the problems such as long operation time and large hardware of conventional crytographic system, because the conventional system must implement the privancy and authenticity sequentially with seqarated algorithms and hardware. The OCB-AES processor with area-efficient modular offset generator and tag generator is designed using IDEC Samsung 0.35um standard cell library and consists of about 55,700 gates. Its cipher rate is about 930Mbps and the number of clock cycles needed to generate the 128-bit tags for authenticity and integrity is (m+2)${\times}$(Nr+1), where m and Nr represent the number of block for message and number of rounds for AES encryption, respectively. The OCB-AES processor can be applicable to soft cryptographic IP of IEEE 802.11i wireless LAN and Mobile SoC.

A Study on the Secure Storage Device for Protecting Cryptographic Keys in Untrusted DRM Client Systems (신뢰할 수 없는 DRM 클라이언트 시스템 하에서 키 보호를 위한 Secure Storage Device의 연구)

  • 이기정;권태경;황성운;윤기송
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.14 no.2
    • /
    • pp.3-13
    • /
    • 2004
  • DRM is the ability to brand digital contents with features that ensure copy Protection and affect the way in which digital contents are played back. DRM is a technology that enables the secure distribution, promotion and sale of digital contents on the Internet. The DRM Client System that operates on the untrusted user environments has to meet the requirements of the contents owner, including copyright and contents protection. After the DRM Client System is installed on the untrusted user environments, it verifies and plays digital contents. With these procedures it cuties out user authentication, contents decryption, and license management. During these procedures, the sensitive data, including authentication information, decryption data and license data, must be secured against any illegal access from users. The goal of this thesis is to introduce the implementation of Secure Storage Device which can protect user's authentication key, cryptographic key, and license data in safe where the DRM Client System is running.

Cryptographic Key Exchange in Wireless LAN System for Efficient Key Refreshment (효율적인 키 갱신을 위한 무선랜 시스템의 암호 키 교환)

  • 강유성;오경희;양대헌;정병호
    • Proceedings of the Korea Institutes of Information Security and Cryptology Conference
    • /
    • 2002.11a
    • /
    • pp.499-503
    • /
    • 2002
  • 초고속 무선인터넷 환경을 구축하기 위한 인프라의 강력한 대안이 되고 있는 무선랜 시스템은 사무실 단위의 소규모 네트워크 환경에서 벗이나 공중망 환경으로 진화하고 있다. 무선랜 시스템의 공중망 적용을 위한 주요 기술 중 하나는 무선랜 시스템의 보안성을 보장하는 것이다. 본 논문에서는 무선랜 사용자와 액세스포인트 사이에서 이루어지는 새로운 암호 키 교환 프레임을 제시하고, 그 결과로써 효율적인 무선구간 암호 키 갱신 및 보안성이 향상된 무선구간 데이터 프레임 암호화 효과를 보인다.

  • PDF