DOI QR코드

DOI QR Code

A Study on the Operation Components for Elliptic Curve Cryptosystem based on a Real Number Field

실수체 기반 타원곡선 암호시스템의 연산항 연구

  • Woo, Chan-Il (Dept. of Information and Communication Engineering, Seoil College) ;
  • Goo, Eun-Hee (Dept. of Information and Communication Engineering, Seoil College)
  • Received : 2011.12.15
  • Accepted : 2012.02.10
  • Published : 2012.02.29

Abstract

Recently, as communication is evolved by leaps and bounds through wired/wireless networks, variety of services are routinely made through communication networks. Accordingly, technology that is for protecting data and personal information is required essentially, and study of security technology is actively being make progress to solve these information protection problems. In this paper, to expand selection scope of the key of elliptic curve cryptography, arithmetic items of real number based elliptic curve algorithm among various cryptographic algorithms was studied. The result of an experiment, we could know that elliptic curve cryptography using the real number can choose more various keys than existing elliptic curve cryptography using integer and implement securer cryptographic system.

최근 들어 유, 무선 네트워크를 통한 통신이 비약적으로 발전함에 따라 다양한 서비스가 통신망을 통하여 일상적으로 이루어지고 있다. 이에 따라 데이터 및 개인 정보를 보호할 수 있는 기술이 필수적으로 요구되어 지고 있으며, 이러한 정보보호 문제를 해결할 수 있는 보안 기술에 대한 연구가 활발하게 진행되고 있다. 본 논문에서는 다양한 암호 알고리즘들 중 타원곡선 암호의 키 선택 범위를 확장하기 위하여 실수체 기반 타원곡선 알고리즘의 연산항에 대한 연구를 수행하였다. 실험 결과, 실수체를 사용한 타원곡선 암호는 기존의 정수를 이용한 타원곡선 암호보다 다양한 키를 선택할 수 있어 보다 안전한 암호 시스템을 구현할 수 있음을 알 수 있었다.

Keywords

References

  1. David J. Malan, Matt Welsh, Michael D. Smith, "A Public-key Infrastructure for Key Distribution in TinyOS Based on Elliptic Curve Cryptography", First IEEE International Conference on Sensor and Ad-hoc Communications and Network, Oct. 2004.
  2. B.Schneier, "Applied Cryptography," John Wiley & Sons, 1996.
  3. Eunhee Goo, Joonmo Kim, "Elliptic Curve Cryptography over the Real Number Plane," The 24th ITC-CSCC 2009, pp. 1177-1179, 2009.
  4. Lee Jee Myong, Lee Chan Ho, Kwon Woo Suk, "Design of Programmable and Configurable Elliptic Curve Cryptosystem Coprocessor", Journal of The IEEK, Vol 42-SD, No. 6, pp. 67-74, June, 2005.
  5. N. Koblitz, "Elliptic Curve Cryptosystems," Mathemetics of Computation, Vol. 48, pp.203-209, 1987. https://doi.org/10.1090/S0025-5718-1987-0866109-5
  6. V. S. Miller, "Use of Elliptic Curves in Cryptography," in Advances in Cryptology-Proc. of CRYPTO'85, pp. 417-426, 1986.
  7. I.F. Blake, G. Seroussi, and N.P. Smart, Elliptic Curves in Cryptography, Cambridge University Press, 1999.
  8. Suntae Hwang, Seung Hyek Lee, "An Efficient Digital Contents Cryptosystem using Elliptic Curve Cryptography Algorithm", Journal of Information Technology Applications and Management, Vol. 11, part 4, pp. 25-33, 2004. 12.