• Title/Summary/Keyword: cryogenic system

Search Result 426, Processing Time 0.023 seconds

Lubrication Effect of Liquid Nitrogen in Cryogenic Machining Friction on the Tool-chip Interface

  • Jun Seong-Chan
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.936-946
    • /
    • 2005
  • The liquid nitrogen as an environmentally safe coolant has been widely recognized in cryo­genic machining, its function as a lubricant is plausible due to its chemical inertness, physical volatility and low viscosity. Since a reduced friction is a direct witness of the lubrication effect from a tribological viewpoint, this paper presents an evaluation of the apparent friction coefficient on the tool-chip interface in cryogenic cutting operations to prove and characterize the lubricity of LN2 in cryogenic machining. The cryogenic cutting technology used in this study is based on a cooling approach and liquid nitrogen delivery system which are intended to apply liquid nitrogen in well-controlled fine jets to selectively localized cutting zones and to penetrate liquid nitrogen to the tool-chip interface. It has been found that the apparent friction coefficient can be significantly reduced in cryogenic machining, depending on the approach of liquid nitrogen delivery.

Fluorescent and Luminescent Proteins Derived from Marine Organisms: Functions and Applications

  • Sehyeok, Im;Jisub, Hwang;Hackwon, Do;Bo-Mi, Kim;Sung Gu, Lee;Jun Hyuck, Lee
    • Journal of Marine Life Science
    • /
    • v.7 no.2
    • /
    • pp.74-85
    • /
    • 2022
  • Organisms constituting a large proportion of marine ecosystems, ranging from bacteria to fish, exhibit fluorescence and bioluminescence. A variety of marine organisms utilize these biochemically generated light sources for feeding, reproduction, communication, and defense. Since the discovery of green fluorescent protein and the luciferin-luciferase system more than a century ago, numerous studies have been conducted to characterize their function and regulatory mechanism. The unique properties of fluorescent and bioluminescent proteins offer great potential for their use in a broad range of applications. This short review briefly describes the functions and characteristics of fluorescent and bioluminescent proteins, in addition to summarizing the recent status of their applications.

Conceptual design of hybrid electric vertical take-off and landing (eVTOL) aircraft with a liquid hydrogen fuel tank

  • Kim, Jinwook;Kwon, Dohoon;Jeong, Sangkwon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.2
    • /
    • pp.27-38
    • /
    • 2022
  • Urban air mobility (UAM) has recently attracted lots of attention as a solution to urban centralization and global warming. Electric vertical take-off and landing (eVTOL) is a concept that emerges as one of the promising and clean technologies for UAM. There are two difficult challenges for eVTOL aircraft to solve. One is how to improve the weight efficiency of aircraft, and the other is how to complete long-range missions for UAM's flight scenarios. To approach these challenges, we propose a consolidated concept design of battery-fuel cell hybrid tiltrotor aircraft with a liquid hydrogen (LH2) fuel tank. The efficiency of a battery-fuel cell hybrid powertrain system on the designed eVTOL aircraft is compared to that of a battery-only powertrain system. This paper shows how much payload can increase and the flight scenario can be improved by hybridizing the battery and fuel cell and presenting a detailed concept of a cryogenic storage tank for LH2.

PERFORMANCE TEST OF THE PROTO-MODEL OF SPACE INFRARED CRYOGENIC SYSTEM (우주용 적외선 냉각시스템 시험모델 성능 평가)

  • Lee, D.H.;Yang, H.S.;Nam, U.W.;Lee, S.;Jin, H.;Kim, D.L.;Pak, S.;Kim, B.H.;Park, S.J.
    • Publications of The Korean Astronomical Society
    • /
    • v.21 no.2
    • /
    • pp.61-66
    • /
    • 2006
  • We have tested the performance of the Proto-model of Space Infrared Cryogenic System (PSICS), which is a small infrared camera, developed by Korea Astronomy and Space science Institute (KASI), Korea Basic Science Institute (KBSI), Korea Institute of Machinery and Materials (KIMM), and i3system co., as a cooperation project. The purpose of PSICS is to ensure a technology of small infrared cryogenic system for future development of space infrared (IR) cameras. PSICS consists of cryogenic part, IR sensor and electronics part, and optical part. The performance test of each part and the integrated system has been completed successfully. PSICS will be used as a guiding camera for ground-based IR telescopes and a test system for developing a space-borne instrument.

Design of Thermodynamic Cycle and Cryogenic Turbo Expander for 2 kW Class Brayton Refrigerator (2 kW급 브레이튼 냉동기용 열역학 사이클 및 극저온 터보 팽창기 설계)

  • Lee, Jinwoo;Lee, Changhyeong;Yang, Hyeongseok;Kim, Seokho
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.299-305
    • /
    • 2016
  • The High Temperature Superconducting power cables (HTS power cables) become increasingly longer to commercialize the HTS power cable system. Accordingly, demands on refrigerators of large cooling capacity per a unit system have been increased. In Korea, it is currently imported from abroad with the high price due to insufficient domestic technologies. In order to commercialize the HTS power cables, it is necessary to develop the refrigerators with large cooling capacity. The Brayton refrigerators are composed of recuperative heat exchangers, compressors and cryogenic turbo expanders. The most directly considering the efficiency of the Brayton refrigerator, it depends on performance of the cryogenic turbo expander. Rotating at high speed in cryogenic temperature, the cryogenic turbo expanders lower temperature by expanding high pressure of a helium or neon gas. In this paper, the reverse Brayton cycle is designed and the cryogenic turbo expander is designed in accordance with the thermodynamic cycle.

Development and Analysis of the Highly Efficient Support System in a Liquid Hydrogen Vessel (액체수소 저장탱크용 고효율 지지 시스템 개발 및 해석)

  • Yun, Sang-Kook;Park, Dong-Heun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.363-369
    • /
    • 2007
  • Probably the most significant heat transfer in the cryogenic liquid hydrogen storage tank from the atmosphere may occur through its support system. In this paper the efficient support system for the cryogenic storage vessel was newly developed and analysed. The support system was composed of a spherical ball as a supporter to reduce the contact area. which is located between two supporting SUS tubes inserted SUS and PTFE blocks. Numerical analyses for temperature distribution, and the thermal stress and strain of the support system were performed by the commercial codes FLUENT and ANSYS. The heat transfer rate of the supporter was evaluated by the thermal boundary potential method which can consider the variation of thermal conductivity with temperature. The results showed that the heat transfer rate through the developed supporter compared with the common SUS tube supporter was significantly reduced. The thermal stress and strain were obtained well below the limited values. It was found that the developed supporter can be one of the most efficient support systems for cryogenic liquid storage vessel.

Operation result of the Cryogenic and Mechanical Measurement System for KSTAR (KSTAR 저온 및 구조 계측 시스템 운전 결과)

  • Kim, Y.O.;Chu, Y.;Yonekawa, H.;Bang, E.N.;Lee, T.G.;Baek, S.H.;Hong, J.S.;Lee, S.I.;Park, K.R.;Oh, Y.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.3
    • /
    • pp.26-30
    • /
    • 2009
  • Korea Superconducting Tokamak Advanced Research(KSTAR) device is composed of 30 superconducting magnets, magnet structure, vacuum vessel, cryostat, current feeder system, and etc. KSTAR device is operated in the cryogenic temperature and high magnetic field. We install about 800 sensors - temperature sensors, stain gages, displacement gages, hall sensors - to monitor the thermal, mechanical, electrical status of KSTAR during operation. As a tremendous numbers of sensors should be installed for monitoring the KSTAR device, the method of effective installation was developed. The sensor test was successfully carried out to check its reliability and its reproduction in the cryogenic temperature. The sensor signal is processed by PXI-based DAQ system and communicated with central control system via machine network and is shown by Operator Interface(OPI) display in the main control room. In order to safely operate the device, any violations of mechanical & superconductive characteristic of the device components were informed to its operation system & operator. If the monitored values exceed the pre-set values, the protective action should be taken against the possible damage. In this paper, the system composition, operation criteria, operation result were presented.

Design and Analysis of Cryogenic Turbo Expander for HTS Power Cable Refrigeration System (초전도 전력 케이블 냉각 시스템 적용을 위한 극저온 터보 팽창기 설계 및 해석)

  • Lee, Changhyeong;Kim, Dongmin;Yang, Hyeongseok;Kim, Seokho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.3
    • /
    • pp.141-148
    • /
    • 2015
  • The cryogenic cooling system should maintain the HTS power cable below 77 K. As the length of HTS power cables has increased, there have been many efforts to develop large capacity cryocoolers. Brayton, Joule-Thomson, and Claude refrigerators were considered for the large capacity cryocooler. Among the various cryocoolers, the Brayton refrigerator is the most competitive in terms of the HTS power cable. At present, it is thought that a 10-kW class refrigerator will be able to be used as a unit cooling system for the commercialization of HTS power cables in the near future. The Brayton refrigerator is composed of recuperative heat exchangers, a compressor, and a cryogenic turbo expander. Among the various components, the cryogenic turbo expander is the part that decreases the temperature, and it is the most significant component that is closely related with overall system efficiency. It rotates at high speed using high-pressure helium or neon gas at cryogenic temperatures. This paper describes the design of a 300-W class Brayton refrigeration cycle and the cryogenic turbo expander as a downscale model for the practical 10-kW class cycle. Flow and structural analyses are performed on the rotating impeller and nozzle to verify the efficiency and the design performance.

Performance Analysis of a Hydrogen Liquefaction System using Commercial Cryogenic Refrigerators for Precooling (상용 극저온 냉동기를 예냉기로 채택한 수소액화 시스템의 성능 해석)

  • Kim, Seung-Hyun;Chang, Ho-Myung;Kang, Byung Ha
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.9 no.2
    • /
    • pp.53-64
    • /
    • 1998
  • Thermal analysis on a Linde-Hampson hydrogen liquefaction system using cryogenic refrigerators as precooling has been carried out. Three commercially available models of cryogenic refrigerators, such as CTI l020CP, CVI CGR009 and CVI CGR011, are considered in the performance analysis. The effect of ortho-para conversion process during hydrogen liquefaction is also studied in detail. The results obtained indicate that the optimal hydrogen mass flow rate and the optimal compressed pressure exist for the maximum hydrogen liquefaction rate. The optimal compressed pressure is increased in the range of 80 - 120 bar with an increase in the hydrogen mass flow rate. It is also found that better performance could be obtained with a cryogenic refrigerator, which produces high cooling capacity at precooling temperature in the range of 80 - 100 K.

  • PDF

Study of thermoacoustic oscillations in half-open tubes for saturated superfluid helium

  • Wang, Xianjin;Niu, Xiaofei;Bai, Feng;Zhang, Junhui;Chen, Shuping
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.3
    • /
    • pp.68-73
    • /
    • 2022
  • Thermoacoustic oscillations (TAOs) are spontaneous pressure oscillations frequently seen in hydrogen or helium cryogenic systems. Half-open tubes connected to cryogenic fluid with a closed room temperature end have a high potential for oscillation generation. Thermoacoustic oscillations will result in significant pressure fluctuations and additional heat load, endangering the security and stability of the cryogenic system. The goal of this paper is to investigate TAOs in superfluid helium using both theoretical and experimental methods. Five half-open tubes with varied typical inner diameters inserted into superfluid helium were installed in a test cryostat. The onset characteristics of thermoacoustic oscillations were presented and studied. The effect of temperature profile was discussed. Finally, a simple eliminating method was introduced.