• Title/Summary/Keyword: cry1Ac

Search Result 52, Processing Time 0.025 seconds

Expression of a Recombinant Cry1Ac Crystal Protein Fused with a Green Fluorescent Protein in Bacillus thuringiensis subsp. kurstaki $Cry^-B$

  • Roh Jong Yul;Lee In Hee;Li Ming Shun;Chang Jin Hee;Choi Jae Young;Boo Kyung Saeng;Je Yeon Ho
    • Journal of Microbiology
    • /
    • v.42 no.4
    • /
    • pp.340-345
    • /
    • 2004
  • To investigate the co-expression and crystallization of a fusion gene between the Bacillus thuringiensis crystal protein and a foreign protein in B. thuringiensis, the expression of the Cry1Ac fused with green fluorescent protein (GFP) genes in a B. thuringiensis $Cry^-B$ strain was examined. The cry1Ac gene was cloned in the B. thuringiensis-E. coli shuttle vector, pHT3101, under the control of the native cry1Ac gene promoter, while the GFP gene was inserted into the XhoI site upstream of the proteolytic cleavage site, in the middle region of the crylAc gene (pProAc-GFP). The B. thuringiensis $Cry^-B$ strain carrying pProAc-GFP (ProAc-GFP/CB) did not produce any inclusion bodies. However, the transformed strain expressed fusion protein forms although the expression level was relatively low. Furthermore, an immu­noblot analysis using GFP and Cry1Ac antibodies showed that the fusion protein was not a single spe­cies, but rather multiple forms. In addition, the N-terminal fragment of Cry1Ac and a non-fused GFP were also found in the B. thuringiensis $Cry^-B$ strain after autolysis. The sporulated cells before autolysis and the spore-crystal mixture after autolysis of ProAc-GFP/CB exhibited insecticidal activities against Plutella xylostella larvae. Accordingly, the current results suggest that a fusion crystal protein produced by the transfomant, ProAc-GFP/CB, can be functionally expressed but easily degraded in B. thuring­iensis.

Expression of a Fusion Protein with Cry1Ac Protein and a Scorpion Insect Toxin in Acrystalliferous Bacillus thuringiensis Strain

  • Roh, Jong-Yul;Li, Ming-Shun;Chang, Jin-Hee;Park, Jae-Young;Shim, Hee-Jin;Shin, Sang-Chul;Boo, Kyung-Saeng;Je, Yeon-Ho
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.8 no.1
    • /
    • pp.89-93
    • /
    • 2004
  • Expression of a fusion protein between B. thuringiensis crystal protein, Cry1Ac1 and a scorpion insect toxin (AaIT, Androctonus australis Hector insect toxin) in acrystalliferous B. thuringiensis strain (Cry-B strain) was examined. The cry 1Ac1 gene was cloned in B. thuringiensis-E coli shuttle vector, pHT3101, under the control of the native cry 1Ac1 gene promoter (pProAc) and a gene encoding AaIT was inserted in XhoI site in the middle of the cry 1Ac1 gene (pProAc-ScoR). B. thuringiensis Cry-B strain carrying pProAc-ScoR (PyoAc-ScoR/CB) produced an inclusion body of irregular shape and the expressed fusion protein is approximately 65 kDa in size. Sporulated cells and spore-crystal mixtures of ProAc-ScoR/CB had insecticidal activity against Plutella xylostella larvae, showing $LT_50$ of ProAc-ScoR/CB (22.59 hrs) lower than that of ProAc/CB (30.06 hrs) at $1{\times}{10^7} {CEU/cm^2}$. These results suggest that the fusion protein including a B. thuringiensis crystal protein and an AaIT may be functionally expressed in B. thupingiensis. Moreover, we verified the additive toxicity of AaIT, which is a new feasible candidate for insect control.

Construction of Modified Bacillus thuringiensis cry1Ac Genes for Transgenic Crop Through Multi Site-directed Mutagenesis

  • Xu, Hong Guang;Roh, Jong-Yul;Wang, Yong;Choi, Jae-Young;Shim, Hee-Jin;Liu, Qin;Tao, Xueying;Woo, Soo-Dong;Jin, Byung-Rae;Je, Yeon-Ho
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.19 no.1
    • /
    • pp.199-204
    • /
    • 2009
  • The newly cloned Bacillus thuringiensis cry1-5 gene showed high activity to both Plutella xylostella and Spodoptera exigua, while cry1Ac only showed high activity against P. xylostella but low to S. exigua. Through the alignment of amino acid sequences between Cry1Ac and Cry1-5, we found 12 different residues in domain I (6 residues) and domain II (6 residues). In this study, the modified cry1Ac gene, which is constructed according to a crop-preferring codon usage, was used as a template to construct mutant B. thuringiensis cry1Ac genes based on cry1-5 gene through multi site-directed mutagenesis. Total 63 various mutant cry genes were obtained at 12 positions randomly. Among them, ten mutant cry genes, whose domain I was totally converted and domain II was randomly, were selected to express in baculovirus expression system as a polyhedrin fusion form. The recombinant proteins were 95 kDa in size and were stably activated as 65 kDa by trypsin. The expressed mutant Cry proteins were applied to bioassays against P. xylostella and S. exigua. All mutants showed high insecticidal activity both to P. xylostella and S. exigua similar to cry1-5. These results suggest that these mutant cry genes might be expected of desirable cry genes for introduction to transgenic crops.

Agrobacterium-mediated transformation of Bacillus thuringiensis cry1Ac gene in chrysanthemum (Dendranthema grandiflorum Kitamura) 'Linneker Salmon' (국화(Dendranthema grandiflorum Kitamura) 'Linneker Salmon'에 Agrobacterium을 이용한 Bacillus thuringiensis cry1Ac 유전자의 형질전환)

  • Han, Bong-Hee;Lee, Su-Young;Lim, Jin-Hee
    • Journal of Plant Biotechnology
    • /
    • v.35 no.2
    • /
    • pp.147-153
    • /
    • 2008
  • Cry1Ac gene was introduced into chrysanthemum (Dendranthema grandiflorum Kitamura) 'Linneker Salmon' through Agrobacterium-mediated gene transformation to develop new lines showing resistance to tobacco cutworm (Spodoptera litura). Cry1Ac gene was transferred into chrysanthemum by Agrobacterium C58C1 containing pCAMBIA2301. After infection of Agrobacterium C58C1 with leaf segments, the segments were cultured on regeneration medium (MS + 1.0 mg/L BA + 0.5 mg/L IAA) containing 10 mg/L kanamycin for the first selection, on the same medium containing 20 mg/L kanamycin for the second selection, and on rooting medium (MS basal medium) containing 20 mg/L kanamycin for the third selection. Until the third selection, sixty nine plantlets (1.6%) were survived and rooted. Thirty six ones (0.8%) among them were confirmed as putative transformants with nptll gene by nptll primer PCR, and 35 (0.8%) of 36 ones as transformants with nptll gene and cry1Ac gene by Southern analysis. The gene transformation efficiency of cry1Ac gene was favorable with 0.8%. The resistance of tobacco cutworm (Spodoptera litura) in chrysan-themum transformant introduced cry1Ac gene was tested in green house. Three transformants were confirmed to have resistance to tobacco cutworm.

Characterization of a Novel cry1-Type Gene from Bacillus thuringiensis subsp. alesti Strain LY-99

  • Qi, Xu Feng;Li, Ming Shun;Choi, Jae-Young;Roh, Jong-Yul;Song, Ji Zhen;Wang, Yong;Jin, Byung-Rae;Je, Yeon-Ho;Li, Jian Hong
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.18 no.1
    • /
    • pp.18-27
    • /
    • 2009
  • B. thuringiensis strain LY-99 belonging to subsp. alesti (H3a3c), was isolated from Chinese tobacco warehouse and showed significantly high toxicity to Plutella xylostella. For the identification of the cry1-type genes from B. thuringiensis LY-99, an extended multiplex PCRrestriction fragment length polymorphism (PCRRFLP) method was established by using two pairs of universal primers based on the conserved regions of the cry1-type genes to amplify around 2.4 kb cry1-type gene fragments. Then the DNA fragment was cloned into pGEM-T Easy vector and digested with EcoRI and EcoRV enzymes. Through this method, a known cry1-type gene was successfully identified from the reference strain, B. thuringiensis subsp. alesti. In addition, the RFLP patterns revealed that B. thuringiensis LY-99 included a novel cry1A-type gene in addition to cry1Aa, cry1Ac, cry1Be and cry1Ea genes. The novel cry1A-type gene was designated cry1Ah2 (Genbank accession No DQ269474). An inverse PCR method was used to amplify the flank regions of cry1Ah2 gene. Finally, 3143 bp HindIII fragment from B. thuringiensis LY-99 plasmid DNA including 5' region and partial ORF was amplified, and sequence analysis revealed that cry1Ah2 gene from LY-99 showed 89.31% of maximum sequence similarity with cry1Ac1 crystal protein gene. In addition, the deduced amino acid sequence of Cry1Ah2 protein shared 87.80% of maximum identity with that of Cry1Ac2. This protein therefore belongs to a new class of B. thuringiensis crystal proteins.

A Technique to Enhance Bacillus thuringiensis Spectrum and Control Efficacy Using Cry Toxin Mixture and Immunosuppressant (Cry 독소단백질 혼합과 면역억제제 첨가를 통한 Bacillus thuringiensis 살충제 적용범위 및 방제력 증진 기술)

  • Eom, Seonghyeon;Park, Youngjin;Kim, Yonggyun
    • The Korean Journal of Pesticide Science
    • /
    • v.18 no.3
    • /
    • pp.181-190
    • /
    • 2014
  • An entomopathogenic bacterium, Bacillus thuringiensis (Bt), can sporulate along with production of insecticidal Cry toxins. Bt Cry toxins exhibit relatively narrow spectrum to target insects due to their specific interactions with midgut receptors. This study designed several strategies to enhance Bt efficacy in target insect spectrum and insecticidal activity. Four Cry toxins were purified from four different Bt strains and showed relatively narrow target insect spectrum. However, the Cry mixtures significantly expanded their target insect spectra. The additional effect of baculovirus to Cry toxin was tested with recombinant baculoviruses expressing Cry1Ac or Cry1Ca. However, the baculovirus was little effective to expand target insect spectrum. Bacterial culture broth of Xenorhabdus nematophila (Xn) significantly suppressed insect cellular immune response and increased Cry toxicity. The addition of Xn culture broth to Cry mixture significantly enhanced Bt efficacy in target insect spectrum and insecticidal activity.

Expression and Synergistic Effect of Bacillus thuringiensis CrylAc in Lepidopteran Toxic Strain to Plutella xylostella

  • Kang, Joong-Nam;Roh, Jong-Yul;Shin, Sang-Chul;Ko, Sang-Hyun;Chung, Yeong-Jin;Kim, Yang-Su;Wang, Yong;Choi, Hee-Kyu;Li, Ming-Shun;Choi, Jae-Young;Je, Yeon-Ho
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.14 no.1
    • /
    • pp.33-36
    • /
    • 2007
  • To improve insecticidal activity of B. thuringiensis 2385-1 (Bt 2385-1), a recombinant plasmid, pHT1K-1Ac, was introduced into lepidopteran toxic Bt 2385-1 by electroporation. The presence of the recombinant plasmid in Bt 2385-1 after electroporation was confirmed by PCR. Bt 2385-1 transformant was named as Bt pHT1K-1Ac/2385-1 (1K-1Ac/2385-1). The 1K-1Ac/2385-1 transformant produced bipyramidal-shaped parasporal inclusion as like the wild-type strain, Bt 2385-1, and showed an 130 kDa band of Cry1Ac protein. The insecticidal activity of 1K-lAc/2385-1 against S. exigua was similar to that of Bt 2385-1 but the $LC_{50}$ value of transformant against P. xylostella was 1.8 times lower. Through these bioassay results, it was confirmed that toxicity of Bt 2385-1 transformant showed synergistic effect by introducing Cry1Ac. These results suggested that the multiple expressions of Cry proteins in a promising Bt strain may interact synergistically in insect midgut, resulting in increase of toxicity and expansion of host spectrum.

Pyramiding transgenes for potato tuber moth resistance in potato

  • Meiyalaghan, Sathiyamoorthy;Pringle, Julie M.;Barrell, Philippa J.;Jacobs, Jeanne M.E.;Conner, Anthony J.
    • Plant Biotechnology Reports
    • /
    • v.4 no.4
    • /
    • pp.293-301
    • /
    • 2010
  • The feasibility of two strategies for transgene pyramiding using Agrobacterium-mediated transformation was investigated to develop a transgenic potato (Solanum tuberosum L. cv. Iwa) with resistance to potato tuber moth (PTM) (Phthorimaea operculella (Zeller)). In the first approach, cry1Ac9 and cry9Aa2 genes were introduced simultaneously using a kanamycin (nptII) selectable marker gene. The second approach involved the sequential introduction (re-transformation) of a cry1Ac9 gene, using a hygromycin resistance (hpt) selectable marker gene, into an existing line transgenic for a cry9Aa2 gene and a kanamycin resistance (nptII) selectable marker gene. Multiplex polymerase chain reaction (PCR) confirmed the presence of the specific selectable marker gene and both cry genes in all regenerated lines. The relative steady-state level of the cry gene transcripts in leaves was quantified in all regenerated lines by real-time PCR analysis. Re-transformation proved to be a flexible approach to effectively pyramid genes for PTM resistance in potato, since it allowed the second gene to be added to a line that was previously identified as having a high level of resistance. Larval growth of PTM was significantly inhibited on excised greenhouse-grown leaves in all transgenic lines, although no lines expressing both cry genes exhibited any greater resistance to PTM larvae over that previously observed for the individual genes. It is anticipated that these lines will permit more durable resistance by delaying the opportunities for PTM adaptation to the individual cry genes.

Detection of Transgenic Rice Containing CrylAc Gene Derived from Bacillus thuringiensis by PCR

  • Kim, Jae-Hwan;Jee, Sang-Mi;Park, Cheon-Seok;Kim, Hae-Yeong
    • Food Science and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.625-630
    • /
    • 2006
  • Polymerase chain reaction (PCR) method was developed for the specific detection of insect-resistant rice containing cry1Ac gene derived from Bacillus thuringiensis (Bt). Primers were designed from the 35S promoter, NOS terminator, cry1Ac gene, and sucrose phosphate synthase (SPS) for general screening of Bt rice. By sequencing the PCR products from the two putative kinds of Bt rice, we designed a specific primer from the junction region between the cry1Ac gene and the NOS terminator that had been inserted into Bt rice. The construct-specific primer was employed to amplify a 147 bp product in the two lines of Bt rice. No amplified products were observed from the other Bt crops with various Bt genes introduced. In qualitative PCR analysis, the limit of detection was 0.005 ng from genomic DNA of Bt rice. In addition, PCR analysis was performed on 64 kinds of rice presently available in the Korean market, and no Bt rice was detected. This method presented in this paper can be used as a highly sensitive and specific detection method of Bt rice.

Construction of a Novel Recombinant Baculovirus Producing Polyhedra with a Bacillus thuringiensis Cry1Ac Crystal Protein

  • Je, Yeon-Ho;Jin, Byung-Rae;Roh, Jong-Yul;Chang, Jin-Hee;Kang, Seok-Kwon
    • The Journal of Korean Society of Virology
    • /
    • v.29 no.3
    • /
    • pp.145-153
    • /
    • 1999
  • We have now constructed a novel recombinant baculovirus Autographa californica nuclear polyhedrosis virus (AcNPV) producing polyhedra with Bacillus thuringiensis (Bt) CryIAc crystal protein. The recombinant polyhedra produced by the recombinant baculovirus, Btrus, in insect cells was characterized. The recombinant baculovirus has two independent transcription units in opposite orientations with two promoters, p10 or polyhedrin gene promoter each initiating transcription of either native polyhedrin or fusion protein with polyhedrin and Bt Cry1Ac crystal protein. Surprisingly, this recombinant baculovirus stably produced recombinant polyhedra which were nearly similar to those of wild-type AcNPV. The immunogold staining experiment showed that the recombinant polyhedra were assembled with polyhedrin and Bt Cry1Ac crystal protein, and contained virus particles. Insecticidal toxicity of recombinant polyhedra of Btrus to the fall webworm, Hyphantria cunea, was strikingly improved in comparison with the wild-type AcNPV.

  • PDF