Expression of a Fusion Protein with Cry1Ac Protein and a Scorpion Insect Toxin in Acrystalliferous Bacillus thuringiensis Strain

  • Roh, Jong-Yul (School of Agricultural Biotechnology, Seoul National University) ;
  • Li, Ming-Shun (School of Agricultural Biotechnology, Seoul National University) ;
  • Chang, Jin-Hee (School of Agricultural Biotechnology, Seoul National University) ;
  • Park, Jae-Young (School of Agricultural Biotechnology, Seoul National University) ;
  • Shim, Hee-Jin (School of Agricultural Biotechnology, Seoul National University) ;
  • Shin, Sang-Chul (Division of Forest Insect Pests and Diseases, Korea Forest Research Institute) ;
  • Boo, Kyung-Saeng (School of Agricultural Biotechology, Seoul National University) ;
  • Je, Yeon-Ho (School of Agricultural Biotechnology, Seoul National University)
  • Published : 2004.03.01

Abstract

Expression of a fusion protein between B. thuringiensis crystal protein, Cry1Ac1 and a scorpion insect toxin (AaIT, Androctonus australis Hector insect toxin) in acrystalliferous B. thuringiensis strain (Cry-B strain) was examined. The cry 1Ac1 gene was cloned in B. thuringiensis-E coli shuttle vector, pHT3101, under the control of the native cry 1Ac1 gene promoter (pProAc) and a gene encoding AaIT was inserted in XhoI site in the middle of the cry 1Ac1 gene (pProAc-ScoR). B. thuringiensis Cry-B strain carrying pProAc-ScoR (PyoAc-ScoR/CB) produced an inclusion body of irregular shape and the expressed fusion protein is approximately 65 kDa in size. Sporulated cells and spore-crystal mixtures of ProAc-ScoR/CB had insecticidal activity against Plutella xylostella larvae, showing $LT_50$ of ProAc-ScoR/CB (22.59 hrs) lower than that of ProAc/CB (30.06 hrs) at $1{\times}{10^7} {CEU/cm^2}$. These results suggest that the fusion protein including a B. thuringiensis crystal protein and an AaIT may be functionally expressed in B. thupingiensis. Moreover, we verified the additive toxicity of AaIT, which is a new feasible candidate for insect control.

Keywords

References

  1. Adang, M. J., M. J. Staver, T. A. Rocheleau, J. Leighton, R. F. Barker and D. V. Thompson (1985) Characterized full-length and truncated plasmid clones of the crystal protein of Bacillus thuringiensis subsp. kurstaki HD-73 and their toxicity to Manduca sexta. Gene 36, 289-300 https://doi.org/10.1016/0378-1119(85)90184-2
  2. Agaisse, H. and D. Lereclus (1995) How does Bacillus thuringiensis produce so much insecticidal crystal protein? J. Bacteriol. 177, 6027-6032 https://doi.org/10.1128/jb.177.21.6027-6032.1995
  3. Barton, K. A. and M. J. Miller (1993) Insecticidal toxins in plants. US patent No.5, 177,308
  4. Baum, J. A. and T. Malvar (1995) Regulation of insecticidal production in Bacillus thuringiensis. Mol. Microbiol. 18, 112
  5. Beegle, C. C. and T. Yamamoto (1992) History of Bacillus thuringiensis Berliner research and development. Can. Entomol. 124, 587-616 https://doi.org/10.4039/Ent124587-4
  6. Cory, 1. S., M. L. Hirst, T. Williams, R. S. Halls, D. Gouson, B. M. Green, T. M. Curty, R. D. Possee, P. J. Cayley and D. H. L. Bishop (1994) Field trial of a genetically improved baculovirus insecticide. Nature 370, 138-140 https://doi.org/10.1038/370138a0
  7. Darbon, H., E. Zlotkin, C. Kopeyan, J. van Rietschoten and H. Rochat (1982) Covalent structure of the insect toxin of the North African scorpion Androctonus australis Hector. Int. J. Pept. Protein Res. 20, 320-330 https://doi.org/10.1111/j.1399-3011.1982.tb00897.x
  8. de Dianous, S., F. Hoarau and H. Rochat (1987) Re-examination of the specificity of the scorpion Androctonus australis Hector insect toxin towards arthropods. Toxicon 25, 411-417 https://doi.org/10.1016/0041-0101(87)90074-2
  9. Ji, S. J., F. Liu, E. Q. Li and Y. X. Zhu (2002) Recombinant scorpion insectotoxin AaIT kills specifically insect cells but not human cells. Cell Res. 12, 143-150 https://doi.org/10.1038/sj.cr.7290120
  10. Lereclus, D., O. Arantes, J. Chaufaux and M. M. Lecadet (1989) Transformation and expression of a cloned $\delta$-endotoxin gene in Bacillus thuringiensis. FEMS Microbiol. Lett. 60, 211-218
  11. Maeda, S., S. L. Volrath, T. N. Hanzlik, S. A. Harper, K. Majama, D. W. Maddox, B. D. Hammock and E. Fowler (1991) Insecticidal effects of an insect-specific neurotoxin expressed by a recombinant baculovirus. Virology 184, 777-780 https://doi.org/10.1016/0042-6822(91)90451-G
  12. Roh, J. Y, I. H. Lee, J. H. Li, M. S. Li, H. S. Kim, Y. H. Je and K. S. Boo (2000) Expression of the cryIAcl gene under the control of the native or the -amylase promoters in an acrystalliferous Bacillus thuringiensis strain. Int. J. Indust. Entomol. 1, 123-129
  13. Stahly, D. P., D. W. Dingmann, L. A. Bulla and A. I. Aronson (1978) Possible origin and function of the parasporal crystals in Bacillus thuringiensis. Biochem. Biophys. Res. Commun. 84, 581-588 https://doi.org/10.1016/0006-291X(78)90745-3
  14. Stewart, L. M. D., M. Hirst, M. L. Ferber, A. T. Merryweather, P. J. Cayley and R. D. Possee (1991) Construction of an improved baculovirus insecticide containing an insect-specific toxin gene. Nature 352, 85-88 https://doi.org/10.1038/352085a0
  15. Yao, B., Y Fan, Q. Zeng and R. Zhao (1996) Insect-resistant tobacco plants expressing insect-specific neurotoxin AaIT. Chin. J. Biotechnol. 12, 67-72
  16. Zlotkin, E., H. Rochat, C. Kopeyan, F. Miranda and S. Lissitzky (1971) Purification and properties of the insect toxin from the venom of the scorpion Androctonus australis Hector. Biochimie 53, 1073-1078 https://doi.org/10.1016/S0300-9084(71)80195-5
  17. Zlotkin, E., L. Fishman and J. P. Shapiro (1992) Oral toxicity to flesh flies of a neurotoxic polypeptide. Arch. Insect Biochem. Physiol. 21, 41-52 https://doi.org/10.1002/arch.940210105
  18. Zlotkin, E., Y Fishman and M. Elazar (2000) AaIT: from neurotoxin to insecticide. Biochimie 82, 869-881 https://doi.org/10.1016/S0300-9084(00)01177-9