• Title/Summary/Keyword: cross-section deformation

Search Result 272, Processing Time 0.027 seconds

Static Aeroelastic Response of Wing-Structures Accounting for In-Plane Cross-Section Deformation

  • Varello, Alberto;Lamberti, Alessandro;Carrera, Erasmo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.4
    • /
    • pp.310-323
    • /
    • 2013
  • In this paper, the aeroelastic static response of flexible wings with arbitrary cross-section geometry via a coupled CUF-XFLR5 approach is presented. Refined structural one-dimensional (1D) models, with a variable order of expansion for the displacement field, are developed on the basis of the Carrera Unified Formulation (CUF), taking into account cross-sectional deformability. A three-dimensional (3D) Panel Method is employed for the aerodynamic analysis, providing more accuracy with respect to the Vortex Lattice Method (VLM). A straight wing with an airfoil cross-section is modeled as a clamped beam, by means of the finite element method (FEM). Numerical results present the variation of wing aerodynamic parameters, and the equilibrium aeroelastic response is evaluated in terms of displacements and in-plane cross-section deformation. Aeroelastic coupled analyses are based on an iterative procedure, as well as a linear coupling approach for different free stream velocities. A convergent trend of displacements and aerodynamic coefficients is achieved as the structural model accuracy increases. Comparisons with 3D finite element solutions prove that an accurate description of the in-plane cross-section deformation is provided by the proposed 1D CUF model, through a significant reduction in computational cost.

Optimal Shape Design of Legs and Stretcher Parts of Chair (의자 다리와 스트레쳐를 중심으로 한 형상 최적화 설계)

  • Lee, Young-Min;Jeong, Hoon
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.256-261
    • /
    • 2016
  • In this paper, Shape optimal design for a chair with 4 legs and 2 stretchers consisting of stainless steel was conducted. The shape was transformed by identifying stress and deformation for the part of leg and stretcher. In addition, load condition and mesh was designed using Hypermesh. The stress analysis was carried out using CSD_Elast that is one of EDISON program. In seat test, Maximum equivalent stress was showed at the contact part between seat and legs. As a result, a leg cross-section with rectangular and arch was designed. And optimal height of stretcher was found to reduce a deformation. Also, maximum deformation was reduced by designing a stretcher with ellipse cross-section. So, Optimal chair having 4 legs with rectangular cross section and 2 stretchers with ellipse cross section was shown to satisfy the safety ratio.

  • PDF

Vibration Analysis of Rotating Blades with the Cross Section Taper Considering the Pre-twist Angle and the Setting Angle (초기 비틀림각 및 장착 각의 영향을 고려한 단면 테이퍼진 회전 블레이드의 진동해석)

  • Lee, Jun-Hee;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.1
    • /
    • pp.10-21
    • /
    • 2010
  • Equations of chordwise and flapwise bending motions for the vibration analysis of rotating pre-twisted blades having tapered cross section and setting angle are derived by using hybrid deformation variable modeling. The two motions are couples to each other due to the pre-twisted angle of the beam cross section. The derived equations are transformed into dimensionless forms in which dimensionless parameters are identified. The effects of the dimensionless parameters on the modal characteristics of rotating pre-twisted blades having tapered cross section and orientation angle are investigated. The eigenvalue loci veering phenomena are also investigated and discussed in this work.

Vibration analysis of rotating blades considering the cross section taper, the pre-twist angle, and the setting angle (단면 테이퍼, 초기 비틀림각, 그리고 장착 각의 영향을 고려한 회전 블레이드의 진동해석)

  • Lee, Jun-Hee;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.288-295
    • /
    • 2009
  • Equations of chordwise and flapwise bending motions for the vibration analysis of rotating pre-twisted blades having tapered cross section and orientation angle are derived by using hybrid deformation variable modeling. The two motions are couples to each other due to the pre-twisted angle of the beam cross section. The derived equations are transformed into dimensionless forms in which dimensionless parameters are identified. The effects of the dimensionless parameters on the modal characteristics of rotating pre-twisted blades having tapered cross section and orientation angle are investigated. The eigenvalue loci veering phenomena is also investigated and discussed in this work.

  • PDF

Study on Effect of Shell Plate Deformation to Radar Cross Section of Warship (선체외판의 변형이 수상함 RCS에 미치는 영향 연구)

  • Kim, Kook-Hyun;Cho, Dae-Seung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.6
    • /
    • pp.509-515
    • /
    • 2011
  • The radar cross section (RCS) of warships is a crucial design factor to improve the survivability in terms of not only low observablity of the platform but also efficiency of on-board sensors and jamming devices against enemy threat. In design stage, numerical models are generated in order to quantitatively assess RCS, of which hull surfaces are modeled with the finite number of the flat plate. However, in practice, hull surfaces are permanently deformed by various kinds of loads such as winds and ocean waves faced during operations. In this paper, the effect of these shell plate deformation to RCS is numerically investigated. For this purpose, RCS calculations are carried out for various kinds of numerical models, such as single plates, dihedrals, large-sized undulate plates, and virtual warships, with some extent of permanent deformation. The results are compared with those of corresponding models without permanent deformation. It is concluded that the permanent deformation of hull surface highly influences RCS characteristics of warships, therefore they should be considered in the RCS analysis.

Vibration Analysis of a Rotating Cantilever Beam Having Tapered Cross Section (테이퍼진 단면을 가진 회전 외팔보의 진동해석)

  • Yoo, Hong-Hee;Lee, Jun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.348-353
    • /
    • 2008
  • A vibration analysis for a rotating cantilever beam with the tapered cross section is presented in this study. The stiffness changes due to the stretching caused by centrifugal inertia forces when a tapered cantilever beam rotates about the axis perpendicular to its longitudinal axis. When the cross section of cantilever beam are assumed to decrease constantly, the mass and stiffness also change according to the variation of the thickness and width ratio of a tapered cantilever beam. Such phenomena result in variations of natural frequencies and mode shapes. Therefore it is important to the equations of motion in order to be obtained accurate predictions of these variations. The equations of motion of a rotating tapered cantilever beam are derived by using hybrid deformation variable modeling method and numerical results are obtained along with the angular velocity and the thickness and width ratio.

  • PDF

Vibration Analysis of a Rotating Cantilever Beam Having Tapered Cross Section (테이퍼진 단면을 가진 회전 외팔보의 진동해석)

  • Lee, Jun-Hee;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.4
    • /
    • pp.363-369
    • /
    • 2009
  • A vibration analysis for a rotating cantilever beam with the tapered cross section is presented in this study. The stiffness changes due to the stretching caused by centrifugal inertia forces when a tapered cantilever beam rotates about the axis perpendicular to its longitudinal axis. When the cross section of cantilever beam are assumed to decrease constantly, the mass and stiffness also change according to the variation of the thickness and width ratio of a tapered cantilever beam. Such phenomena result in variations of natural frequencies and mode shapes. Therefore it is important to the equations of motion in order to be obtained accurate predictions of these variations. The equations of motion of a rotating tapered cantilever beam are derived by using hybrid deformation variable modeling method and numerical results are obtained along with the angular velocity and the thickness and width ratio.

A New Experimental Method of Mechanical Analysis for Arterial Cross-Section Research (동맥 전단부의 역학적분석을 위한 새로운 실험적 방법)

  • 황민철;신정욱
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.2
    • /
    • pp.149-156
    • /
    • 1995
  • This paper suggests a new experimental system and protocol of mechanical analysis for arterial cross-section research. So far, most methods of arterial studies have been focused on the deformation measurement in longitudinal and circumferential direction. The deformation in radial direction has been theoretically assumed by Poisson's ratio and/or the incompressibility of arterial wall. Also, the radial gradient of strains are neglected. In fact, the radial deformation and radial gradient of strains against blood pressure are important to be observed in the pathological point of view of artery. Proposed experimental system and protocol are to measure the deformation of cross-sectional artery. Also, this method enables to measure the deformation of anterior, posterior, and side site of cross-sectional area. It is meaningful to correlate the mechanically experimented data with pathological data of athroscIerotic artery.

  • PDF

On the Effect of Transversal Warping in Thick Plate (두꺼운 판의 전단 Warping 영향에 대한 연구)

  • 이상갑;최원준
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.10a
    • /
    • pp.29-38
    • /
    • 1992
  • Approximate Constant Shear Angle Theory is usually used to take a transversal shear deformation of thick plate into consideration, which cannot be effectively considered the influence of transversal warping of cross-section with an increase of thickness. It right be the best way to represent the exact warping of cross-section. In this study, the derivation of warping function is attempted, and the effect of shear deformation and transversal warping is to be considered through the nolinear analysis of plate.

  • PDF

Shear deformation effect in flexural-torsional buckling analysis of beams of arbitrary cross section by BEM

  • Sapountzakis, E.J.;Dourakopoulos, J.A.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.2
    • /
    • pp.141-173
    • /
    • 2010
  • In this paper a boundary element method is developed for the general flexural-torsional buckling analysis of Timoshenko beams of arbitrarily shaped cross section. The beam is subjected to a compressive centrally applied concentrated axial load together with arbitrarily axial, transverse and torsional distributed loading, while its edges are restrained by the most general linear boundary conditions. The resulting boundary value problem, described by three coupled ordinary differential equations, is solved employing a boundary integral equation approach. All basic equations are formulated with respect to the principal shear axes coordinate system, which does not coincide with the principal bending one in a nonsymmetric cross section. To account for shear deformations, the concept of shear deformation coefficients is used. Six coupled boundary value problems are formulated with respect to the transverse displacements, to the angle of twist, to the primary warping function and to two stress functions and solved using the Analog Equation Method, a BEM based method. Several beams are analysed to illustrate the method and demonstrate its efficiency and wherever possible its accuracy. The range of applicability of the thin-walled theory and the significant influence of the boundary conditions and the shear deformation effect on the buckling load are investigated through examples with great practical interest.