• 제목/요약/키워드: cross sectional method

검색결과 1,324건 처리시간 0.026초

Buckling Load of Columns with Same Volume and Length but Variable Cross-section along the Length (부피와 길이가 같은 변단면 기둥의 좌굴하중)

  • Lee, Hong-Kyu;Yoo, Jong-Ho;Lee, Seung-Won;Kim, Sun-Hee;Won, Yong-Suk;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • 제6권3호
    • /
    • pp.77-85
    • /
    • 2015
  • In this paper, we present the result of investigations pertaining to the elastic buckling of simply supported columns with various cross-sectional dimensions but the same length and volume. In the investigations the accuracy of the analysis methods is studied and it was found that the result obtained by the successive approximations technique is the most accurate. In addition, the elastic buckling loads of columns with variable cross-section dimensions are obtained by the theoretical and numerical methods. From the results, it was found that the buckling loads obtained by the numerical methods are close to the buckling loads obtained by the successive approximations technique for the practical standpoints. Moreover, the buckling load of column with convexity in its middle is the highest while the buckling load of the tapered column is the lowest as expected.

Partial interaction analysis of multi-component members within the GBT

  • Ferrarotti, Alberto;Ranzi, Gianluca;Taig, Gerard;Piccardo, Giuseppe
    • Steel and Composite Structures
    • /
    • 제25권5호
    • /
    • pp.625-638
    • /
    • 2017
  • This paper presents a novel approach that describes the first-order (linear elastic) partial interaction analysis of members formed by multi-components based on the Generalised Beam Theory (GBT). The novelty relies on its ability to accurately model the partial interaction between the different components forming the cross-section in both longitudinal and transverse directions as well as to consider the cross-sectional deformability. The GBT deformations modes, that consist of the conventional, extensional and shear modes, are determined from the dynamic analyses of the cross-section represented by a planar frame. The partial interaction is specified at each connection interface between two adjacent elements by means of a shear deformable spring distributed along the length of the member. The ease of use of the model is outlined by an application performed on a multi-component member subjected to an eccentric load. The values calculated with an ABAQUS finite element model are used to validate the proposed method. The results of the numerical applications outline the influence of specifying different rigidities for the interface shear connection and in using different order of polynomials for the shape functions specified in the finite element cross-section analysis.

Transmission Electron Microscope Sampling Method for Three-Dimensional Structure Analysis of Two-Dimensional Soft Materials

  • Lee, Sang-Gil;Lee, Ji-Hyun;Yoo, Seung Jo;Datta, Suvo Jit;Hwang, In-Chul;Yoon, Kyung-Byung;Kim, Jin-Gyu
    • Applied Microscopy
    • /
    • 제45권4호
    • /
    • pp.203-207
    • /
    • 2015
  • Sample preparation is very important for crystal structure analysis of novel nanostructured materials in electron microscopy. Generally, a grid dispersion method has been used as transmission electron microscope (TEM) sampling method of nano-powder samples. However, it is difficult to obtain the cross-sectional information for the tabular-structured materials. In order to solve this problem, we have attempted a new sample preparation method using focused ion beam. Base on this approach, it was possible to successfully obtain the electron diffraction patterns and high-resolution TEM images of the cross-section of tabular structure. Finally, we were able to obtain three-dimensional crystallographic information of novel zeolite nano-crystal of the tabular morphology by applying the new sample preparation technique.

Development of Multi-channel Eddy Current System for Inspection of Press Rolls (압연롤 검사를 위한 다중 센서 와전류 탐상 검사 시스템 개발)

  • Lee, Jae-Ho;Park, Tae-Sung;Park, Ik-Keun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • 제26권3호
    • /
    • pp.306-312
    • /
    • 2017
  • Press rolls are constantly exposed to physical and heat stresses on their surface and are prone to crack, bruise, and spall if the accumulated stress goes beyond the critical point. Such surface phenomenon can cause them to lose their functionality and eventually lead to a halted production line. Eddy current testing can be considered a useful method to investigate the surface of the roll. The method involves the application of a high intensity magnetic field onto the surface of the roll, and thereby finding any early stage of possible defects. When the method was applied for roll inspection, the cross section of the sensor was regulated as per the overall testing speed. A smaller cross sectional area implied a better resolution but a longer testing time. In this paper, a convenient method to increase both overall system resolution and inspection speed of eddy current roll inspection is suggested by using a devised array sensor structure.

Minimum stiffness of bracing for multi-column framed structures

  • Aristizabal-Ochoa, J. Dario
    • Structural Engineering and Mechanics
    • /
    • 제6권3호
    • /
    • pp.305-325
    • /
    • 1998
  • A method that determines the minimum stiffness of baracing to achieve non-sway buckling conditions at a given story level of a multi-column elastic frame is proposed. Condensed equations that evaluate the required minimum stiffness of the lateral and torsional bracing are derived using the classical stability functions. The proposed method is applicable to elastic framed structures with rigid, semirigid, and simple connections. It is shown that the minimum stiffness of the bracing required by a multi-column system depends on: 1) the plan layout of the columns; 2) the variation in height and cross sectional properties among the columns; 3) the applied axial load pattern on the columns; 4) the lack of symmetry in the loading pattern, column layout, column sizes and heights that cause torsion-sway and its effects on the flexural bucking capacity; and 5) the flexural and torsional end restrains of the columns. The proposed method is limited to elastic framed structures with columns of doubly symmetrical cross section with their principal axes parallel to the global axes. However, it can be applied to inelastic structures when the nonlinear behavior is concentrated at the end connections. The effects of axial deformations in beams and columns are neglected. Three examples are presented in detail to show the effectiveness of the proposed method.

A Study on the Si-SiC Composites Fabricated by Pressureless Powder Packing Forming Method (무가압 분말 충전 성형법에 의해 제조된 Si-SiC 복합체에 관한 연구)

  • 박정현;임은택;성재석;최헌진;이준석
    • Journal of the Korean Ceramic Society
    • /
    • 제32권6호
    • /
    • pp.710-718
    • /
    • 1995
  • The new forming method, Pressureless Powder Packing Forming Method was applied to the manufacturing of reaction sintered SiC. After the experiments of vibratory powder packing and binder infiltration, the abrasive SiC powder of which mean size is 45${\mu}{\textrm}{m}$ was selected to this forming method. Uniform green bodies with porosity of 45% and narrow pore size distribution could be formed by this new forming method. Also, complex or varied cross-sectional shapes could be easily manufactured through the silicone rubber mould used in this forming method. Maximum 15 wt% amorphous carbon was penetrated into green body by multi impregnation-carbonization cycles. And reaction-bonded SiC was manufactured by infiltration of SiC-carbon shaped bodies with liquid silicon.

  • PDF

A study on evacuation characteristic by cross-sectional areas and smoke control velocity at railway tunnel fire (철도터널 화재시 단면적별 제연풍속에 따른 대피특성 연구)

  • Yoo, Ji-Oh;Kim, Jin-Su;Rie, Dong-Ho;Kim, Jong-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • 제17권3호
    • /
    • pp.215-226
    • /
    • 2015
  • In this study, with variables the cross section area ($97m^2$, $58m^2$, $38m^2$) and the wind velocity(0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5 m/s), the time of getting off train dependent on the way of itself and the width of the evacuation route was analyzed, and also fire and evacuation characteristics is reviewed by cross section area of each wind velocity. As the result, if cross section become smaller, the density of harmful gases in the tunnel increased more than the ratio of decreasing cross section area. In the case of small cross sectional area, the surrounding environment from initial fire is indicated to exceed the limit criteria suggested in performance based design. In the analysis of effective evacuation time for evacuation characteristics, the effective evacuation time was the shortest in the case of evaluating effective evacuation time by the visibility. Also, there was significant difference between the effective evacuation time on the basis of performance based evaluation and the effective evacuation time obtained by analyzing FED (Fractional effective dose), one of the analysis method obtaining the point that deaths occur, against harmful gases.

A Comparative and Parametric Study of Slope Stability Using a Probability-based Method in Railway Slope (철도 사면에서 확률론적 기법을 이용한 사면안정성 매개변수 비교연구)

  • Choi, Chan-Yong;Kim, Ju-Yong;Eum, Ki-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • 제11권4호
    • /
    • pp.17-25
    • /
    • 2012
  • In this study, it was carried out reliability analysis and slope stability analysis in a standard cross-sectional embankment on high speed railway. It was confirmed that changing tendency of safety factor with various parameter of each soil materials properties and trends of the probability of failure according to the reliability index. The results have shown that a safety factor were relatively large affected an cohesions and internal friction angle of soil compared to the unit weight of soil. Also, most of the standard cross-sectional embankment in high speed railway was generally evaluated the level of below average (below average) by the reliability analysis according to criterion in US. Army but the 12m height of dry embankment case was shown bad condition as Poor.

Numerical analysis of the thermal behaviors of cellular concrete

  • She, Wei;Zhao, Guotang;Yang, Guotao;Jiang, Jinyang;Cao, Xiaoyu;Du, Yi
    • Computers and Concrete
    • /
    • 제18권3호
    • /
    • pp.319-336
    • /
    • 2016
  • In this study, both two- and three-dimensional (2D and 3D) finite-volume-based models were developed to analyze the heat transfer mechanisms through the porous structures of cellular concretes under steady-state heat transfer conditions and to investigate the differences between the 2D and 3D modeling results. The 2D and 3D reconstructed pore networks were generated from the microstructural information measured by 3D images captured by X-ray computerized tomography (X-CT). The computed effective thermal conductivities based on the 2D and 3D calculations performed on the reconstructed porous structures were found to be nearly identical to those evaluated from the 2D cross-sectional images and the 3D X-CT images, respectively. In addition, the 3D computed effective thermal conductivity was found to agree better with the measured values, in comparison with the 2D reconstruction and real cross-sectional images. Finally, the thermal conductivities computed for different reconstructed porous 3D structures of cellular concretes were compared with those obtained from 2D computations performed on 2D reconstructed structures. This comparison revealed the differences between 2D and 3D image-based modeling. A correlation was thus derived between the results of the 3D and 2D models.

Optimization of a Single-Channel Pump Impeller for Wastewater Treatment

  • Kim, Joon-Hyung;Cho, Bo-Min;Kim, Youn-Sung;Choi, Young-Seok;Kim, Kwang-Yong;Kim, Jin-Hyuk;Cho, Yong
    • International Journal of Fluid Machinery and Systems
    • /
    • 제9권4호
    • /
    • pp.370-381
    • /
    • 2016
  • As a single-channel pump is used for wastewater treatment, this particular pump type can prevent performance reduction or damage caused by foreign substances. However, the design methods for single-channel pumps are different and more difficult than those for general pumps. In this study, a design optimization method to improve the hydrodynamic performance of a single-channel pump impeller is implemented. Numerical analysis was carried out by solving three-dimensional steady-state incompressible Reynolds-averaged Navier-Stokes equations using the shear stress transport turbulence model. As a state-of-the-art impeller design method, two design variables related to controlling the internal cross-sectional flow area of a single-channel pump impeller were selected for optimization. Efficiency was used as the objective function and was numerically assessed at twelve design points selected by Latin hypercube sampling in the design space. An optimization process based on a radial basis neural network model was conducted systematically, and the performance of the optimum model was finally evaluated through an experimental test. Consequently, the optimum model showed improved performance compared with the base model, and the unstable flow components previously observed in the base model were suppressed remarkably well.