• Title/Summary/Keyword: cross laminated timber (CLT)

Search Result 37, Processing Time 0.023 seconds

Research Trends in Hybrid Cross-Laminated Timber (CLT) to Enhance the Rolling Shear Strength of CLT (CLT의 rolling shear 향상을 위한 hybrid cross laminated timber 연구 동향)

  • YANG, Seung Min;LEE, Hwa Hyung;KANG, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.4
    • /
    • pp.336-359
    • /
    • 2021
  • In this study, hybrid CLT research and development trends were analyzed to improve the low rolling shear strength of CLT, a large wooden panel used in high-rise wooden buildings. Through this, basic data that can be used in research and development directions for localization of CLT were prepared. As a way to improve the low rolling shear strength, the use of hardwood lamina, the change of the lamina arrangement angle, and the use of structural composite materials are mainly used. Rolling shear strength and shear modulus of hardwood lamina are more than twice as high as softwood lamina. It confirmed that hardwoods can be used and unused species can be used. Rolling shear strength 1.5 times, shear modulus 8.3 times, bending stiffness 4.1 times improved according to the change of the layer arrangement angle, and the CLT strength was confirmed by reducing the layer arrangement angle. Structural wood-based materials have been improved by up to 1.35 times MOR, 1.5 times MOE, and 1.59 times rolling shear strength when used as laminas. Block shear strength between the layer materials was also secured by 7.0 N/mm2, which is the standard for block shear strength. Through the results of previous studies, it was confirmed that the strength performance was improved when a structural wood based materials having a flexural performance of MOE 7.0 GPa and MOR 40.0 MPa or more was used. This was determined based on the strength of layered materials in structural wood-based materials. The optimal method for improving rolling shear strength is judged to be the most advantageous application of structural wood based materials with strength values according to existing specifications. However, additional research is needed on the orientation of CLT lamina arrangement according to the fiber arrangement of structural wood-based materials, and the block shear strength between lamina materials.

Optimized Lamina Size Maximizing Yield for Cross Laminated Timber Using Domestic Trees

  • Jeong, Gi-Young;Lee, Jun-Jae;Yeo, Hwan-Myeong;Hong, Jung-Pyo;Kim, Hyung-Kun;So, Won-Tek;Chung, Woo-Yang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.2
    • /
    • pp.141-148
    • /
    • 2013
  • The goal of this study was to find the optimum lamina size from red pine (Pinus densiflora) and Japanese cedar (Cryptomeria japonica) logs for the cross laminated timber (CLT) production. From visual inspection of the logs from two species, red pine log showed a larger knot and warp compared to the Japanese cedar. Different cross-sectional sizes of lamina ($110mm{\times}30mm$, $110mm{\times}40mm$, $110mm{\times}50mm$, $50mm{\times}30mm$, $30mm{\times}30mm$) from two species were analyzed for yield and grade. Regardless of the species, the optimized cross sectional size for maximizing the yield was $110mm{\times}30mm$. In grading for the different size laminas from Japanese cedar and red pine, a higher percentage of the first and second grade was found from the $110mm{\times}30mm$ lamina cut.

Evaluation of Bearing Strength of Self-Tapping Screws according to the Grain Direction of Domestic Pinus densiflora

  • LEE, In-Hwan;KIM, Keonho;SHIM, Kug-bo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.1
    • /
    • pp.1-11
    • /
    • 2022
  • To evaluate the bearing strength of red pine cross-laminated timber (CLT) with self-tapping screw (STS), which is widely used as a fastener for connection in CLT building, the bearing test was conducted. Accoring to the STS's diameters (8, 10, 12 mm), the bearing test specimens with half hole were manufactured. Bearing strength was compared and reviewed in consideration of the configuration in STS and the loading direction to the grain of red pine. As a result of the bearing test on the STS's diameter, the yield bearing load increases as the larger diameter of the STS in all directions of the red pine. The bearing strength of the thread part (thread + tip) was higher than the shank part (shank + shank cutter). In compared with the directions to the grain of red pine, the bearing strength of the cross section parallel to the loading direction was the highest, and the tangent section was the lowest bearing strength. The average bearing strength of the loading direction in parallel to the grain was 23.43 MPa, which was about 45% higher than the average 16.16 MPa in perpendicular to the grain. The predicted bearing strength calculated by Eurocode (EN) and Korean Building Code (KBC)'s equation was lower than the experimental value. It is nessesary to propose the new equations of bearing strength reflected the configuration information of STS.

Analysis of the Types of External Wall and Roof Structure Layer Composition of CLT Building (CLT 건축물의 외벽 및 지붕 구조체 레이어 구성 유형 분석)

  • Yoo, Dong-Wan;Lee, Tae-Goo
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.22 no.4
    • /
    • pp.71-78
    • /
    • 2020
  • Today, the whole world is going through a big chaos due to the COVID-19, but paradoxically, the emergence of COVID-19 has been leading to the need for sustainable development, such as Green New Deal that can improve global warming and carbon emissions, and the need for sustainable architecture is growing bigger and bigger in the architectural field as well. The level of CLT buildings in Korea is at a very rudimentary stage, while CLT buildings remedying existing wooden buildings are getting the spotlight among European countries for sustainable architecture. This study was conducted to categorize structure layer compositions of overseas CLT buildings and analyze architectural techniques and materials applied by collecting and analyzing information about CLT structure layer compositions of overseas CLT building-related institutions, companies and cases. When classifying structure layer compositions of foreign CLT buildings depending on the roles of layers. it was revealed that exterior wall structure layers were combined and organized within a sequence of external finishing, ventilation, waterproof, board, external insulation, airtightness, structure, airtightness, interior insulation, interior finishing, sloped roof structure layers were external finishing, ventilation, waterproof, board, external insulation, airtightness, structure, airtightness, interior insulation, interior finishing, flat roof structure layers were external finishing, ventilation, waterproof, planking wood, external insulation, waterproof, external insulation, airtightness, structure, airtightness, interior insulation, interior finishing.

Preparation of EVA/Intumescent/Nano-Clay Composite with Flame Retardant Properties and Cross Laminated Timber (CLT) Application Technology (난연특성을 가지는 EVA/Intumescent/나노클레이 복합재료 제조 및 교호집성재(Cross Laminated Timber) 적용 기술)

  • Choi, Yo-Seok;Park, Ji-Won;Lee, Jung-Hun;Shin, Jae-Ho;Jang, Seong-Wook;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.1
    • /
    • pp.73-84
    • /
    • 2018
  • Recently, the importance of flame retardation treatment technology has been emphasized due to the increase in urban fire accidents and fire damage incidents caused by building exterior materials. Particularly, in the utilization of wood-based building materials, the flame retarding treatment technology is more importantly evaluated. An Intumescent system is one of the non-halogen flame retardant treatment technologies and is a system that realizes flame retardancy through foaming and carbonization layer formation. To apply the Intumescent system, composite material was prepared by using Ethylene vinyl acetate (EVA) as a matrix. To enhance the flame retardant properties of the Intumescent system, a nano-clay was applied together. Composite materials with Intumescent system and nano - clay technology were processed into sheet - like test specimens, and then a new structure of cross laminated timber with improved flame retardant properties was fabricated. In the evaluation of combustion characteristics of composite materials using Intumescent system, it was confirmed that the maximum heat emission was reduced efficiently. Depending on the structure attached to the surface, the CLT had two stages of combustion. Also, it was confirmed that the maximum calorific value decreased significantly during the deep burning process. These characteristics are expected to have a delayed combustion diffusion effect in the combustion process of CLT. In order to improve the performance, the flame retardation treatment technique for the surface veneer and the optimization technique of the application of the composite material are required. It is expected that it will be possible to develop a CLT structure with improved fire characteristics.

Performance of Six-Layered Cross Laminated Timber of Fast-Growing Species Glued with Tannin Resorcinol Formaldehyde

  • Deazy Rachmi TRISATYA;Adi SANTOSO;Abdurrachman ABDURRACHMAN;Dina Alva PRASTIWI
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.2
    • /
    • pp.81-97
    • /
    • 2023
  • The aim of this study were to evaluate tannin resorcinol formaldehyde (TRF) for the preparation of cross-laminated timbers (CLTs) made from fast-growing tree species and to analyze the physical and mechanical properties of CLTs. TRF copolymer resin was prepared by using the bark extracts of Swietenia mahagoni (L.) Jacq. It was observed that the TRF adhesive possessed less solid content (23.59%), high viscosity (11.35 poise), and high pH values (10.0) compared to the standard phenol resorcinol formaldehyde. The TRF adhesive was applied to produce CLTs with the addition of 15% tapioca and flour as an extender. The six-layered CLTs were produced from sengon (Falcataria moluccana Miq.), jabon [Anthocephalus cadamba (Roxb) Miq.], coconut (Cocos nucifera L.), and the combination of coconut-jabon and coconut-sengon wood. The analysis of variance revealed that the layer composition of CLT significantly affected the physical and mechanical properties of the beam. While the modulus of rupture met the standard, the moisture content and modulus of elasticity values did not fulfill JAS 1152-2007. All of the CLTs produced in this study demonstrated low formaldehyde emission, ranging from 0.001 mg/L to 0.003 mg/L, thereby satisfying the JAS 1152 for structural glue laminated timber.

Seismic Reliability Assessment of Mid- and High-rise Post-tensioned CLT Shear Wall Structures

  • Sun, Xiaofeng;Li, Zheng;He, Minjuan
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.2
    • /
    • pp.175-185
    • /
    • 2020
  • Currently, few studies have been conducted to comprehend the seismic reliability of post-tensioned (PT) CLT shear wall structures, due to the complexity of this kind of structural system as well as due to lack of a reliable structural model. In this paper, a set of 4-, 8-, 12-, and 16-storey benchmark PT CLT shear wall structures (PT-CLTstrs) were designed using the direct displacement-based design method, and their calibrated structural models were developed. The seismic reliability of each PT-CLTstr was assessed based on the fragility analysis and based on the response surface method (RSM), respectively. The fragility-based reliability index and the RSM-based reliability index were then compared, for each PT-CLTstr and for each seismic hazard level. Results show that the RSM-based reliabilities are slightly less than the fragility-based reliabilities. Overall, both the RSM and the fragility-based reliability method can be used as efficient approaches for assessing the seismic reliabilities of the PT-CLTstrs. For these studied mid- and high-rise benchmark PT-CLTstrs, following their fragility-based reliabilities, the 8-storey PT-CLTstr is subjected to the least seismic vulnerability; while, following their RSM-based reliabilities, the 4-storey PT-CLTstr is subjected to the least seismic vulnerability

Development of Ply-Lam Composed of Japanese Cypress Laminae and Korean Larch Plywood

  • FUJIMOTO, Yoshiyasu;TANAKA, Hiroshi;MORITA, Hideki;KANG, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.1
    • /
    • pp.57-66
    • /
    • 2021
  • In recent years, the use of cross laminated timber (CLT) has been evolving. In addition, CLT manufactured with various species such as Japanese cedar has been developed to utilize the local resources in each country. However most factories in Japan produce CLT by bonding the laminae in width direction for orthogonal layers, where grain of element is perpendicular to the grain of outer layer, and this process is considered to be one of the factors that reduce productivity. A new wood based material (hereinafter referred to as Ply-lam) using wooden panel such as plywood for the orthogonal layer was developed in order to improve productivity in CLT manufacturing and improve quality. Japanese cypress lamina was used for the parallel layer, where grain of element is parallel to the grain of outer layer, of CLT and Korean larch plywood was used for the orthogonal layer, in order to effectively use Korean larch and expand the utilization of Japanese cypress. The cross-sectional construction of the Ply-lam was 5-layers 5-plies, and the dimensions were 1000 mm (width) × 150 mm (depth) × 4000 mm (length). As a performance evaluation of the manufactured Ply-lam, strength tests such as out-of-plane bending, in-plane bending, out-of-plane shearing and in-plane shearing tests were carried out. As the result of this study, Ply-lam composed of Japanese cypress lamina panels and Korean larch plywood showed very higher out-of-plane bending strength compared to the standard strength of CLT. And the result obtained in other tests seems to show a sufficiently high value.

Numerical Simulation on Disproportionate Collapse of the Tall Glulam Building under Fire Conditions

  • Zhao, Xuan;Zhang, Binsheng;Kilpatrick, Tony;Sanderson, Iain
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.4
    • /
    • pp.311-321
    • /
    • 2021
  • Perception of the public to structural fires is very important because there are only a number of tall timber buildings constructed in the world. People are hesitating to accept tall timber buildings, so it is essential to ensure the first generation of tall timber buildings to a very high standard, especially fire safety. Right now, there are no specific design standards or regulations for fire design of tall timber buildings in Europe. Even though heavy timber members have better fire resistance than steel components, many conditions still need to be verified before considering the use of timber materials, e.g. fire spread, post-fire collapse, etc. This research numerically explores the structural behaviours of a tall Glulam building when one of its internal Glulam (Glued laminated timber) columns fails after sustaining a full 120-min standard fire and is removed from the established finite element building model created in SAP2000. The numerical results demonstrate that the failure and removal of the selected internal Glulam column may lead to the local failure of the adjacent CLT (Cross laminated timber) floor slabs, but will not lead to large disproportionate damage and collapse of the whole building. Here, the building is assumed to be located in Glasgow, Scotland, UK.