DOI QR코드

DOI QR Code

Preparation of EVA/Intumescent/Nano-Clay Composite with Flame Retardant Properties and Cross Laminated Timber (CLT) Application Technology

난연특성을 가지는 EVA/Intumescent/나노클레이 복합재료 제조 및 교호집성재(Cross Laminated Timber) 적용 기술

  • Choi, Yo-Seok (KB Adhesives Co., Ltd) ;
  • Park, Ji-Won (Lab of adhesion & bio-composites, Program in Environmental Materials Science, Department of Forest Sciences, College of Agricultural and Life Sciences, Seoul National University) ;
  • Lee, Jung-Hun (Lab of adhesion & bio-composites, Program in Environmental Materials Science, Department of Forest Sciences, College of Agricultural and Life Sciences, Seoul National University) ;
  • Shin, Jae-Ho (Lab of adhesion & bio-composites, Program in Environmental Materials Science, Department of Forest Sciences, College of Agricultural and Life Sciences, Seoul National University) ;
  • Jang, Seong-Wook (Lab of adhesion & bio-composites, Program in Environmental Materials Science, Department of Forest Sciences, College of Agricultural and Life Sciences, Seoul National University) ;
  • Kim, Hyun-Joong (Lab of adhesion & bio-composites, Program in Environmental Materials Science, Department of Forest Sciences, College of Agricultural and Life Sciences, Seoul National University)
  • 최요석 ((주)케이비어드히시브스.) ;
  • 박지원 (서울대학교 농업생명과학대학 산림과학부 환경재료과학전공, 접착과학 및 바이오복합재료 연구실) ;
  • 이정훈 (서울대학교 농업생명과학대학 산림과학부 환경재료과학전공, 접착과학 및 바이오복합재료 연구실) ;
  • 신재호 (서울대학교 농업생명과학대학 산림과학부 환경재료과학전공, 접착과학 및 바이오복합재료 연구실) ;
  • 장성욱 (서울대학교 농업생명과학대학 산림과학부 환경재료과학전공, 접착과학 및 바이오복합재료 연구실) ;
  • 김현중 (서울대학교 농업생명과학대학 산림과학부 환경재료과학전공, 접착과학 및 바이오복합재료 연구실)
  • Received : 2017.11.17
  • Accepted : 2018.01.05
  • Published : 2018.01.25

Abstract

Recently, the importance of flame retardation treatment technology has been emphasized due to the increase in urban fire accidents and fire damage incidents caused by building exterior materials. Particularly, in the utilization of wood-based building materials, the flame retarding treatment technology is more importantly evaluated. An Intumescent system is one of the non-halogen flame retardant treatment technologies and is a system that realizes flame retardancy through foaming and carbonization layer formation. To apply the Intumescent system, composite material was prepared by using Ethylene vinyl acetate (EVA) as a matrix. To enhance the flame retardant properties of the Intumescent system, a nano-clay was applied together. Composite materials with Intumescent system and nano - clay technology were processed into sheet - like test specimens, and then a new structure of cross laminated timber with improved flame retardant properties was fabricated. In the evaluation of combustion characteristics of composite materials using Intumescent system, it was confirmed that the maximum heat emission was reduced efficiently. Depending on the structure attached to the surface, the CLT had two stages of combustion. Also, it was confirmed that the maximum calorific value decreased significantly during the deep burning process. These characteristics are expected to have a delayed combustion diffusion effect in the combustion process of CLT. In order to improve the performance, the flame retardation treatment technique for the surface veneer and the optimization technique of the application of the composite material are required. It is expected that it will be possible to develop a CLT structure with improved fire characteristics.

최근 들어 늘어나고 있는 도시형 화재 사고와 건축 외장재에 따른 화재 피해 사례의 증가에 따라 난연처리기술의 중요성이 부각되고 있다. 특히, 목재를 기반으로 한 건축재료의 활용에 있어서 난연처리기술은 더욱 중요하게 평가되고 있다. Intumescent 시스템은 비할로겐계 난연처리기술의 하나로, 발포와 탄화층 형성을 통하여 난연성을 구현하는 시스템이다. 본 연구에서는 Intumescent 시스템을 적용하기 위해 Ethylene vinyl acetate (EVA)를 매트릭스로 채용하여 복합재료를 제조하였다. Intumescent 시스템의 난연특성을 강화하기 위해 나노클레이를 함께 적용하였다. Intumescent 시스템과 나노클레이 기술을 함께 적용한 복합재료를 시트상의 시험편으로 가공한 후, 이를 활용하여 표면의 난연특성이 강화된 새로운 구조의 교호집성재를 제작하였다. Intumescent 시스템을 적용한 복합재료의 연소특성 평가에서 최대 열방출량이 효과적으로 감소되는 것을 확인할 수 있었다. 표면에 부착된 구조에 따라 CLT는 두 단계에 걸친 연소 현상이 발생했다. 또한, 심부 연소 과정에서 최대 열방출률이 크게 감소하는 경향을 확인할 수 있었다. 이러한 특성은 목재의 연소과정에 있어 연소 확산지연효과가 있을 것으로 판단된다. 표면단판에 대한 난연처리기술 및 복합재료 적용 최적화 기술을 통해 보다 화재특성이 개선된 CLT 구조체 개발이 가능할 것으로 기대된다.

Keywords

References

  1. Bartlett, A., Gajewski, K., Hadden, R., Butterworth, N., Bisby, L. 2015. Fire-Induced Delamination of Cross-Laminated Timber. Fire Safety of Green Buildings, 17.
  2. Babrauskas, V., Peacock, R.D. 1992. Heat release rate: the single most important variable in fire hazard. Fire Safety Journal 18(3): 255-272. https://doi.org/10.1016/0379-7112(92)90019-9
  3. Bourbigot, S., Le Bras, M., Dabrowski, F., Gilman, J.W., Kashiwagi, T. 2000. PA-6 clay Nanocomposite hybrid as char forming agent in intumescent formulations. Fire and Materials 24(4): 201-208. https://doi.org/10.1002/1099-1018(200007/08)24:4<201::AID-FAM739>3.0.CO;2-D
  4. Buchanan, A., Ostman, B., Frangi, A. 2014. Fire resistance of timber structures. Gaithersburg: National Institute of Standards and Technology.
  5. Choi, C., Yuk, C.R., Yoo, J.C., Park, J.Y., Lee, C.G., Kang, S.G. 2015. Physical and mechanical properties of cross laminated timber using plywood as core layer. Journal of the Korean Wood Science and Technology 43(1): 86-95. https://doi.org/10.5658/WOOD.2015.43.1.86
  6. Costa, L., Camino, G. 1988. Thermal behaviour of melamine. Journal of thermal analysis 34(2): 423-429. https://doi.org/10.1007/BF01913181
  7. Dabrowski, F., Le Bras, M., Cartier, L., Bourbigot, S. 2001. The use of clay in an EVA-based intumescent formulation. Comparison with the intumescent formulation using polyamide-6 clay Nanocomposite as carbonisation agent. Journal of fire sciences 19(3): 219-241. https://doi.org/10.1106/WB1V-X0C6-G5EB-TC3J
  8. Doan, M., Bayramli, E. 2011. Synergistic effect of boron containing substances on flame retardancy and thermal stability of clay containing intumescent polypropylene nanoclay composites. Polymers for Advanced Technologies 22(12): 1628-1632. https://doi.org/10.1002/pat.1650
  9. Gu, J.W., Zhang, G.C., Dong, S.L., Zhang, Q.Y., Kong, J. 2007. Study on preparation and fire-retardant mechanism analysis of intumescent flame-retardant coatings. Surface and Coatings Technology 201(18): 7835-7841. https://doi.org/10.1016/j.surfcoat.2007.03.020
  10. Horrocks, A.R., Price, D., Price, D. (Eds.). 2001. Fire Retardant Materials. woodhead Publishing.
  11. Hwang, E.-C., Kwon, Y.-J. 2017. A Study on the Fire Risk of Urban type housing constructed by pilotis structures, -In the case of Uijeongbu fire-. Proceeding of Annual Meeting of Korea Institute of Building Construction 17(1): 50-51.
  12. Hwang, T.S., Lee, B.J., Yang, Y.K., Choi, J.H., Kim, H.J. 2005. The R&D Trends of Polymer Flame Retardants. Prospect Ind Chem 8(6): 36-40.
  13. Jang, B.N., Choi, J. 2009. Research Trend of Flame Retardant and Flame Retardant Resin. Polymer Science and Technology 20(1): 8-15.
  14. Kim, J.I., Park, J.Y., Kong, Y.T., Lee, B.H., Kim, H.J., Roh, J.K. 2002. Performance on flame-retardant polyurethane coatings for wood and wood-based materials. Journal of the Korean Wood Science and Technology 30(2): 172-179.
  15. Kim, S.-D. 2003. A Study on Emergency Management Learning of the Urban Model of Man Made Disaster - Focus on the Case of the gas explosion and fire accident on Dae gu subway. Journal of the Korean Urban Management Association, 16(3): 23-44.
  16. Lane, W., Buchanan, A.H., Moss, P.J. 2004. Fire performance of laminated veneer lumber (LVL). In World Conference on Timber Engineering.
  17. Lecouvet, B., Sclavons, M., Bailly, C., Bourbigot, S. 2013. A comprehensive study of the synergistic flame retardant mechanisms of halloysite in intumescent polypropylene. Polymer Degradation and Stability 98(11): 2268-2281. https://doi.org/10.1016/j.polymdegradstab.2013.08.024
  18. Lee, S.-J., Bang, S.-J., Park, S.-H., Gong, J.-H., Kim,G.-M., Park, M.-J., Bae, G.-C. 2016. Development and basic design of 5-story wooden building using CLT. 2016 Proceedings of The Korean Society of Wood Science and Technology Annual Meeting. 2016(2): 24-24.
  19. Li, B., Xu, M. 2006. Effect of a novel charring foaming agent on flame retardancy and thermal degradation of intumescent flame retardant polypropylene. Polymer Degradation and Stability 91(6): 1380-1386. https://doi.org/10.1016/j.polymdegradstab.2005.07.020
  20. Li, B., Jia, H., Guan, L., Bing, B., Dai, J. 2009. A novel intumescent flame retardant system for flame retarded LLDPE/EVA composites. Journal of Applied Polymer Science 114(6): 3626-3635. https://doi.org/10.1002/app.31027
  21. Lu, S.Y., Hamerton, I. 2002. Recent developments in the chemistry of halogen-free flame retardant polymers. Progress in Polymer Science 27(8): 1661-1712. https://doi.org/10.1016/S0079-6700(02)00018-7
  22. Luo, M., Beck, V. 1994. The fire environment in a multi-room building—comparison of predicted and experimental results. Fire Safety Journal 23(4): 413-438. https://doi.org/10.1016/0379-7112(94)90006-X
  23. Ma, H., Tong, L., Xu, Z., Fang, Z., Jin, Y., Lu, F. 2007. A novel intumescent flame retardant: Synthesis and application in ABS copolymer. Polymer Degradation and Stability 92(4): 720-726. https://doi.org/10.1016/j.polymdegradstab.2006.12.009
  24. McGregor, C. 2013. Contribution of cross laminated timber panels to room fires. Carleton University. Canada.
  25. Nyambo, C., Kandare, E., Wilkie, C. A. 2009. Thermal stability and flammability characteristics of ethylene vinyl acetate (EVA) composites blended with a phenyl phosphonate-intercalated layered double hydroxide (LDH), melamine polyphosphate and/or boric acid. Polymer Degradation and Stability 94(4): 513-520. https://doi.org/10.1016/j.polymdegradstab.2009.01.028
  26. Poon, L.S. 1988. Predicting time of flashover. Fire Safety Science 3: 283-294.
  27. Schartel, B., Hull, T.R. 2007. Development of fire-retarded materials-Interpretation of cone calorimeter data. Fire and Materials 31(5): 327-354. https://doi.org/10.1002/fam.949
  28. Son, D.W., Kang, M.R., Lee, D.H., Park, S.B. 2013. Decay resistance and anti-mold efficacy of wood treated with fire retardants. Journal of the Korean Wood Science and Technology 41(6): 559-565. https://doi.org/10.5658/WOOD.2013.41.6.559
  29. Son, D.W., Eom, C.D., Park, J.C., Park, J.S. 2014. Performance of Structural Glulam Manufactured with Fire Retardants Treated Lumbers. Journal of the Korean Wood Science and Technology 42(4): 477-482. https://doi.org/10.5658/WOOD.2014.42.4.477
  30. Sultan, B.Å., Sörvik, E. 1991. Thermal degradation of eva and eba-a comparison. I. Volatile decomposition products. Journal of Applied Polymer Science 43(9): 1737-1745. https://doi.org/10.1002/app.1991.070430917
  31. Zhan, J., Song, L., Nie, S., Hu, Y. 2009. Combustion properties and thermal degradation behavior of polylactide with an effective intumescent flame retardant. Polymer Degradation and Stability 94(3): 291-296. https://doi.org/10.1016/j.polymdegradstab.2008.12.015