• Title/Summary/Keyword: critical temperature ($T_c$)

Search Result 278, Processing Time 0.022 seconds

New MOD solution for the preparation of high $J_c$ REBCO superconducting films (고특성 REBCO 초전도 박막 제조를 위한 새로운 MOD 전구 용액 제조)

  • Kim, Byeong-Joo;Hong, Gye-Won;Lee, Hee-Gyoun
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2001-2003
    • /
    • 2005
  • Various organic acid were used in order to prepare new metalorganic deposition solution for high quality $REBa_2Cu_3O_{7-{\delta}}$ (RE=Y, Eu, Gd) films. Prepared fluorine free MO precursor solution was coated on single crystal (001) $LaAlO_3$ (LAO) by dip coating method. Processing parameters such as oxygen partial pressure, water vapor, ramping rate and pyrolysis temperature etc havebeen controlled in order to make high $J_c$ films with a good epitaxial relationship with substrate. 0.5 micron-thick film was obtained by single coating and no crack appeared after calcination. Oxygen partial pressure was varied in the range of $100{\sim}1,000 ppm$ and conversion heat treatment was carried out at the temperature of $725{\sim}765^{\circ}C$. A critical transition temperature $(T_{c0})$ of 90K and a critical transport current density $(J_c)$ of $>0.5MA/cm^2$ (77K and self-field) were demonstrated for the YBCO film on (001) oriented LAO substrates with a thickness of 0.5 micron. $I_c$ was determined by utilizing a transport measurement. SEM and XRD investigations confirmed that films were grown epitaxially onto the LAO single crystal substrate. It is thought that fluorine free new MOD solutionis promising for high quality REBCO films.

  • PDF

Magnetic Properties of $GdBa_2Cu_3O_{7-y}$ Bulk Superconductors Fabricated by a Top-seeded Melt Growth Process (종자 결정 성장법으로 제조된 $GdBa_2Cu_3O_{7-y}$ 벌크 초전도체의 자기적 특성)

  • Kim, K.M.;Park, S.D.;Jun, B.H.;Ko, T.K.;Kim, C.J.
    • Progress in Superconductivity
    • /
    • v.14 no.1
    • /
    • pp.39-44
    • /
    • 2012
  • The fabrications condition and superconducting properties of top-seeded melt growth (TSMG) processed $GdBa_2Cu_3O_{7-y}$ (Gd123) bulk superconductors were studied. Processing parameters (a maximum temperature ($T_{max}$), a temperature for crystal growth ($T_G$) and a cooling rate ($R_G$) through a peritectic temperature ($T_P$) for the fabrication of single grain Gd123 superconductors were optimized. The magnetic levitation forces, trapped magnetic fields, superconducting transition temperature ($T_c$) and critical current density ($J_c$) of the Gd123 bulks superconductors were estimated. Single grain Gd123 bulk superconductors were successfully fabricated at the optimized processing condition. The $T_c$ of a TSMG processed Gd123 sample was 92.5 K and the $J_c$ at 77 K and 0 T was approximately $50kA/cm^2$. The trapped magnetic field contour and magnetic levitation forces were dependent on the top surface morphology of TSMG processed Gd123 samples. The single grain Gd123 samples, field-cooled at 77 K using a Nd-B-Fe permanent magnet with 5.27 kG and 30 mm dia., showed the trapped magnetic field contour of a single grain with a maximum of 4 kG at the sample center. The maximum magnetic levitation forces of the single grain Gd123 sample, field-cooled or zero field-cooled, were 40 N and 107 N, respectively.

Generalization of the Curie-Weiss Model to the D-dimensional Spin System

  • Hyung-june Woo;Eun Kyung Lee;Eok-Kyun Lee
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.4
    • /
    • pp.485-487
    • /
    • 1993
  • The critical behavior of the classical D-dimensional spin model (D${\ge}$2), which is intermediate model that link up the Ising (D = 1) and the spherical model (D = ${\infty}$), is studied for the case of constant coupling interaction independent of the spin-spin distance (Curie-Weiss model). Analytical results show that the critical behavior of the present model is in quantitative agreement with the prediction of the phenomenological mean-field theory independent of D. Critical temperature is calculated to be T$_c$=k/JD. This gives a quantitative explanation of the relationship between the spin degree of freedom and the critical temperature.

Infrared Estimation of Canopy Temperature as Crop Water Stress Indicator

  • Kim, Minyoung;Kim, Seounghee;Kim, Youngjin;Choi, Yonghun;Seo, Myungchul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.499-504
    • /
    • 2015
  • Decision making by farmers regarding irrigation is critical for crop production. Therefore, the precision irrigation technique is very important to improve crop quality and yield. Recently, much attention has been given to remote sensing of crop canopy temperature as a crop water-stress indicator, because it is a scientifically based and easily applicable method even at field scales. This study monitored a series of time-variant canopy temperature of cucumber under three different irrigation treatments: under-irrigation (control), optimal-irrigation, and over-irrigation. The difference between canopy temperature ($T_c$) and air temperature ($T_a$), $T_c-T_a$, was calculated as an indicator of cucumber water stress. Vapor pressure deficit (VPD) was evaluated to define water stress on the basis of the temperature difference between leaf and air. The values of $T_c-T_a$ was negatively related to VPD; further, cucumber growth in the under- and over-irrigated fields showed water stress, in contrast to that grown in the optimally irrigated field. Thus, thermal infrared measurements could be useful for evaluating crop water status and play an important role in irrigation scheduling of agricultural crops.

Development of Fluorine-free MOD Precursor Solution for fabricating REBCO Superconducting Films (REBCO 초전도 박막제조를 위한 Fluorine-free MOD 전구체 용액 개발)

  • Kim, Byeong-Joo;Lim, Sun-Weon;Kim, Ho-Jin;Hong, Gye-Won;Lee, Hee-Gyoun
    • Progress in Superconductivity
    • /
    • v.7 no.2
    • /
    • pp.152-157
    • /
    • 2006
  • New precursor solution with dichloroacetic acid (DCA) was developed for fabricating high $J_c$ REBCO film. DCA based-precursor solution was coated on $LaAlO_3$(001) substrate by dip coating method. Processing parameters such as oxygen partial pressure, water vapor, ramping rate and pyrolysis temperature were controlled in order to obtain a good epitaxial film. The film with thickness of 0.5 micrometer was obtained by single coating and no crack was observed at calcined films. Oxygen partial pressure was controlled in the range of $100{\sim}1,000$ ppm and conversion heat treatment was carried out at the temperature range of $705-765^{\circ}C$. A critical transition temperature ($T_c$) of 90 K and a critical transport current density ($J_c$) of $>0.5\;MA/cm^2$ (77 K and self-field) were obtained for the GdBCO film. It is thought that fluorine-free MOD solution using DCA is promising precursor solution for fabricating high quality REBCO films.

  • PDF

Single-Crystal like MgB2 thin films grown on c-cut sapphire substrates

  • Duong, Pham Van;Ranot, Mahipal;Kang, Won Nam
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.3
    • /
    • pp.7-9
    • /
    • 2014
  • Single-crystal like $MgB_2$ thin film was grown on (000l) $Al_2O_3$ substrate by using hybrid physical-chemical vapor deposition (HPCVD) system. Single crystal properties were studied by X-ray diffraction (XRD) and the full width at half maximum (FWHM) of the (0001) $MgB_2$ peak is $15^{\circ}$, which is very close to that has been reported for $MgB_2$ single-crystal. It indicates that the crystalline quality of thin film is good. Temperature dependence on resistivity was investigated by physical property measurement system (PPMS) in various applied fields from 0 to 9 T. The upper critical field ($H_{c2}$) and irreversibility field ($H_{irr}$) were determined from PPMS data, and the estimated values are comparable with that of $MgB_2$ single-crystals. The thin film shows a high critical temperature ($T_c$) of 40.4 K with a sharp superconducting transition width of 0.2 K, and a high residual resistivity ratio (RRR=21), it reflects that $MgB_2$ thin film has a pure phase structure.

Effect of Trehalose on Stabilization of Cellular Components and Critical Targets Against Heat Shock in Saccharomyces cerevisiae KNU5377

  • PAIK SANG-KYOO;YUN HAE-SUN;IWAHASHI HITOSHI;OBUCHI KAORU;JIN INGNYOL
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.965-970
    • /
    • 2005
  • In our previous study [14], we found that heat-shock exposure did not stimulate the neutral trehalase activity in Sacchromyces cerevisiae KNU5377, but did in ATCC24858. Consequently, the trehalose content in KNU5377 became 2.6 times higher than that in ATCC24858. Because trehalose has been shown to stabilize the structure and function of some macromolecules, the present work was focused to elucidate the relationship between trehalose content of these strains and thermal stabilities of whole cells, through differential scanning calorimetry (DSC), and to predict critical targets calculated from the hyperthermic cell killing rates. These analyses showed that the prominent DSC transition of both strains gave identical $T_m$ (transition temperature) values in exponentially growing cells, and that the $T_m$ values of critical targets was about $3^{\circ}C$ higher in KNU5377 than in ATCC24858. Both heat-shocked KNU5377 and ATCC24858 cells displayed similar shifts in their DSC transition profiles. On the other hand, the $T_m$ value of the critical target of KNU5377 was decreased by $2.1^{\circ}C$, which was still higher than ATCC24858 showing no changes. In view of these results, the intrinsic thermotolerance of KNU5377 did not appear to result from the stability of entire cellular components, but rather possibly from that of particular macromolecules, including critical targets, even though it should be investigated in more details. Although the trehalose levels in heat-shocked cells are significantly different, as described in our previous study [14], the overall pattern of thermal stabilities and their predicted critical targets in two heat-shocked strains seemed to be identical. These data suggest that the trehalose levels examined before and after heat shock of exponentially growing cells are not closely correlated with the stabilities of whole cells and/or critical targets in both yeast strains.

Superconductivity recovery of vacuum annealed HTS GdBCO CC

  • You, Jong Su;Yang, Jeong Hun;Song, Kyu Jeong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.3
    • /
    • pp.41-46
    • /
    • 2022
  • The superconducting properties of high temperature superconducting (HTS) GdBCO coated conductor (CC) tape (Ag/GdBCO/Buffer-layers/Stainless Steel) were investigated, specifically a series of samples prepared by vacuum heat treatment (200℃ to 600℃), using a Quantum Design PPMS-14. The critical current density Jc value was obtained by applying the modified Bean model to the irreversible magnetization ∆Mirr(H) data which was estimated from the magnetization M(H) loop. The reduction rates of lnJc and Tc values according to the increase of the vacuum annealing temperature Tan were d(lnJc)/dTan = - 0.016 A/(cm2∙℃) and dTc/dTan = - 0.24, respectively. We examined the effect of recovery temperature Tre (475℃ to 700℃) and recovery duration time t (0.5 h to 24 h) on the restoration of previously completely lost superconductivity in samples that subsequently received heat treatment in an O2 gas flow space. All samples were fully restored to superconductivity by heat treatment in an O2 gas flow space. The recovery temperatures Tre (475℃ to 700℃) and recovery duration times t (0.5 h to 24 h) were both independent of the superconductivity recovery characteristics.

A Study on the Microstructure and Mechanical properties of Fe Aluminide alloys (Fe-Aluminide합금의 미세조직과 기계적 특성에 관한 연구)

  • Jo, Jong-Chun;Lee, Do-In;Lee, Seong-Jae;Choe, Byeong-Hak;Kim, Hak-Min
    • 연구논문집
    • /
    • s.22
    • /
    • pp.115-125
    • /
    • 1992
  • Mechanical properties and microstructure were investigated on vacuum induction melted $Fe_3A1$base alloys of $DO_3$ structure. Specal emphasis were put on the effect of alloy chemistry, grain size and process(rolling, directional solidification) on mechanical properties of Fe-22.5-39at.%Al at elevated temperature between room temperature and $800^{\circ}C$. grain size of as-cast alloys is refined by rolling from 1mm to $80\mum$. Tensile strength of Fe-24.lat.%AI was about 404MPa at the critical ordering temperature, and the fracture strain of the alloy was 1-2% at room temperature. An inverse temperature dependence of the strength is noticed as-cast $Fe_3A1$. The presence of Cr and Zr do not affect the room temperature ductility and high temperature strength. Fracture strain of directionally solidified(DS) $Fe_3A1$ is about 1%at room temperature, but is about 60%at. $T_C$(550^{\circ}C)$. Tensile strength of DS alloy is lower than that of as-cast alloy at $530^{\circ}C$ and $430^{\circ}C$. Failure mode at room temperature varies from transgranular fracture to intergranular fracture with the addition of Al. the failure mode also varies from mixed(transgranular+ intergranular) mode between room temperature and $500^{\circ}C$ to intergranular mode above $550^{\circ}C$

  • PDF

Josephson Tunneling and Pairing Symmetry of High Tc Superconductor

  • Shin, E.J.;Nahm, Kyun;Chung, M.H;Kim, M.D.;Kim, C.K.;Noh, H.S.
    • Progress in Superconductivity
    • /
    • v.1 no.2
    • /
    • pp.85-88
    • /
    • 2000
  • The temperature dependent Josephson critical current $J_c(T)/J_c(0)$ between high $T_c$ superconductors along the a-axis is theoretically studied. The interface influence on the wave functions of quasi-particles is included in the theory within the framework of the two-dimensional t-J model. It is found that the experimental results can be satisfactorily explained by the present model with d wave pairing symmetry.

  • PDF