Magnetic Properties of $GdBa_2Cu_3O_{7-y}$ Bulk Superconductors Fabricated by a Top-seeded Melt Growth Process

종자 결정 성장법으로 제조된 $GdBa_2Cu_3O_{7-y}$ 벌크 초전도체의 자기적 특성

  • Kim, K.M. (Neutron Science Division, Korea Atomic Energy Research Institute) ;
  • Park, S.D. (Neutron Science Division, Korea Atomic Energy Research Institute) ;
  • Jun, B.H. (Neutron Science Division, Korea Atomic Energy Research Institute) ;
  • Ko, T.K. (Department of Electrical and Eletronic Engineering, Yonsei University) ;
  • Kim, C.J. (Neutron Science Division, Korea Atomic Energy Research Institute)
  • Received : 2012.05.14
  • Accepted : 2012.08.03
  • Published : 2012.08.31

Abstract

The fabrications condition and superconducting properties of top-seeded melt growth (TSMG) processed $GdBa_2Cu_3O_{7-y}$ (Gd123) bulk superconductors were studied. Processing parameters (a maximum temperature ($T_{max}$), a temperature for crystal growth ($T_G$) and a cooling rate ($R_G$) through a peritectic temperature ($T_P$) for the fabrication of single grain Gd123 superconductors were optimized. The magnetic levitation forces, trapped magnetic fields, superconducting transition temperature ($T_c$) and critical current density ($J_c$) of the Gd123 bulks superconductors were estimated. Single grain Gd123 bulk superconductors were successfully fabricated at the optimized processing condition. The $T_c$ of a TSMG processed Gd123 sample was 92.5 K and the $J_c$ at 77 K and 0 T was approximately $50kA/cm^2$. The trapped magnetic field contour and magnetic levitation forces were dependent on the top surface morphology of TSMG processed Gd123 samples. The single grain Gd123 samples, field-cooled at 77 K using a Nd-B-Fe permanent magnet with 5.27 kG and 30 mm dia., showed the trapped magnetic field contour of a single grain with a maximum of 4 kG at the sample center. The maximum magnetic levitation forces of the single grain Gd123 sample, field-cooled or zero field-cooled, were 40 N and 107 N, respectively.

Keywords

References

  1. M. Ikeda, A. Wongsatanawarid, H. Seki and M. Murakami, Physica C 469 (2009) 1270.
  2. T. Oka, K. Tanaka, T. Kimura, D. Mimura, S. Fukui, J. Ogawa, T. Sato, M. Ooizumi, K. Yokoyama and M. Yamaguchi, Physica C 470 (2010) 1799.
  3. U. Mizutani, H. Iluta, T. Hosokawa, H. Ishihara, K. Tazoe, T. Oka, Y. Itoh, Y. Yanagi and M. Yoshikawa, Supercond. Sci. Technol., 13 (2000) 863.
  4. M. Morita, S. Takebayashi, M. Tanaka, K. Kimura, K. Miyamoto and K. Sawano, Adv. Supercond. III (1991) 733.
  5. W. Lo, D. A. Cardwell, C. D. Dewhurst and S. L. Dung, J. Mater. Res. 11 (1996) 786.
  6. P. Schatzle, G. Krabbes, G. Stover, G. Fuchs and D. Schlafer, Supercond. Sci. Technol. 12 (1999) 69.
  7. Y. A. Jee, C. J. Kim, T. H. Sung and G. W. Hong, Supercond. Sci. Technol. 13 (2000) 195.
  8. C. J. Kim, G. W. Hong and H. J. Oh, Physica C 357 (2001) 635.
  9. C. J. Kim, K. B. Kim, I. H. Kuk, G. W. Hong, Y. S. Lee and H. S. Park, Supercond. Sci. Technol 10 (1997) 947.
  10. D. A. Cardwell, N. Hari babu, Physica C 445-448 (2006) 1.
  11. S. Nariki, S. J. Seo, N. Sakai and M. Murakami, Supercond. Sci. Technol 13 (2000) 778.
  12. S. Nariki, N. Sakai and M. Murakami, Physica C 357-350 (2001) 811.
  13. C. J. Kim, H. W. Park, K. B. Kim and G. W. Hong, Supercond. Sci. Technol. 8 (1995) 652.
  14. C. J. Kim, H. C. Moon, K. B. Kim, S. C. Kwon, D. S. Suhr, I. S. Suh and D. Y. Won, J. Mater. Sci. Letts, 11 (1992) 831.
  15. H. Hinai, S. Nariki, K. Ogasawara, N. Sakai, M. Murakami and M. Otsuka, Physica C 357-360 (2001) 706.
  16. C. Xu, A. Hu, N. Sakai, M. Izumi and I. Hirabayashi, Physica C 426-431 (2005) 613.
  17. C. Xu, A. Hu, N. Sakai, M. Izumi and I. Hirabayashi, Supercond. Sci. Technol. 18 (2005) 229.