• Title/Summary/Keyword: critical state line

Search Result 89, Processing Time 0.029 seconds

Conceptual Clothing Design Process Using Cooperative Learning Strategies: Senior Clothing Design Class

  • Sohn, MyungHee;Kim, Dong-Eun
    • Fashion, Industry and Education
    • /
    • v.14 no.1
    • /
    • pp.59-68
    • /
    • 2016
  • This paper identified the source of inspiration to cooperatively design a fashion collection from US undergraduate clothing design students and addressed how to implement team-based learning strategy to conceptual clothing design in class. Data was collected from the total of 51 students in a senior clothing design course at a large 4-year university in the US. The assigned project for this class was to develop a group collection under a same theme. Each student worked with his/her team member(s) to create an outfit and the entire class worked as a group to create a cohesive collection. The study showed that the sources of inspiration for the themes/concepts came from 11categories: historic era/old Hollywood glamour, shape/line/structure/architectural, fairy tales movies, nature/abstract, circus/mysterious, occasion/place, object, designer/artist, futuristic, culture, and various movies. To implement cooperative learning strategies in the clothing design class, a total of five class presentation/discussion sessions were held for theme/concept decision, fabric decision, design decision, test garment evaluation and design modification, and final products. Throughout the design process, team-based learning strategy promoted students' engagement and participation and inspired their critical thinking skills for making decisions within a team.

A Study on Machining of A V-groove on the Optical Fiber Connector Using a Miniaturized Machine Tool (소형공작기계를 이용한 광커넥터용 V 홈 가공에 관한 연구)

  • 이재하;박성령;양승한;이영문
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.5
    • /
    • pp.38-45
    • /
    • 2004
  • As optical communication is being substituted for telecommunication, the demand of a large variety of fiber optic components is increasing. V-groove substrates, one of the module components, are used to connect optical fibers to optical planar circuits and to arrange fibers. Their applications are multi-channel optical connectors and optical waveguide fiber coupling, etc. Because these substrates are a critical part of the splitter in a multiplexer and a multi fiber connector, precise and reliable fabrication process is required. For precisely aligning core pitch between fibers, machined core pitch tolerance should be within sub-microns. Therefore, these are generally produced by state-of-the-art micro-fabrication like MEMS. However, most of the process equipment is very expensive. It is also difficult to change the process line for custom designs to meet specific requirements using various materials. For various design specifications such as different values of the V angle and low-priced process, the fabrication method should be flexible and low cost. To achieve this goal, we have suggested a miniaturized machine tool with high accuracy positioning system. Through this study, it is shown that this cutting process can be applied to produce V-groove subtracts. We also show the possibility of using a miniaturized machining system for producing small parts.

Modeling flow instability of an Algerian sand with the dilatancy rule in CASM

  • Ramos, Catarina;Fonseca, Antonio Viana da;Vaunat, Jean
    • Geomechanics and Engineering
    • /
    • v.9 no.6
    • /
    • pp.729-742
    • /
    • 2015
  • The aim of the present work was the study of instability in a loose sand from Les Dunes beach in Ain Beninan, Algeria, where the Boumerdes earthquake occurred in 2003. This earthquake caused significant structural damages and claimed the lives of many people. Damages caused to infrastructures were strongly related to phenomena of liquefaction. The study was based on the results of two drained and six undrained triaxial tests over a local sand collected in a region where liquefaction occurred. All the tests hereby analyzed followed compression stress-paths in monotonic conditions and the specimens were isotropically consolidated, since the objective was to study the instability due to static loading as part of a more general project, which also included cyclic studies. The instability was modeled with the second-order work increment criterion. The definition of the instability line for Les Dunes sand and its relation with yield surfaces allowed the identification of the region of potential instability and helped in the evaluation of the susceptibility of soils to liquefy under undrained conditions and its modeling. The dilatancy rate was studied in the points where instability began. Some mixed tests were also simulated, starting with drained conditions and then changing to undrained conditions at different time steps.

Modelling creep behavior of soft clay by incorporating updated volumetric and deviatoric strain-time equations

  • Chen Ge;Zhu Jungao;Li Jian;Wu Gang;Guo Wanli
    • Geomechanics and Engineering
    • /
    • v.35 no.1
    • /
    • pp.55-65
    • /
    • 2023
  • Soft clay is widely spread in nature and encountered in geotechnical engineering applications. The creep property of soft clay greatly affects the long-term performance of its upper structures. Therefore, it is vital to establish a reasonable and practical creep constitutive model. In the study, two updated hyperbolic equations based on the volumetric creep and deviatoric creep are respectively proposed. Subsequently, three creep constitutive models based on different creep behavior, i.e., V-model (use volumetric creep equation), D-model (use deviatoric creep equation) and VD-model (use both volumetric and deviatoric creep equations) are developed and compared. From the aspect of prediction accuracy, both V-model and D-model show good agreements with experimental results, while the predictions of the VD-model are smaller than the experimental results. In terms of the parametric sensitivity, D-model and VD-model are lower sensitive to parameter M (the slope of the critical state line) than V-model. Therefore, the D-model which is developed by incorporating the updated deviatoric creep equation is suggested in engineering applications.

Role of CH2F2 and N-2 Flow Rates on the Etch Characteristics of Dielectric Hard-mask Layer to Extreme Ultra-violet Resist Pattern in CH2F2/N2/Ar Capacitively Coupled Plasmas

  • Kwon, B.S.;Lee, J.H.;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.210-210
    • /
    • 2011
  • The effects of CH2F2 and N2 gas flow rates on the etch selectivity of silicon nitride (Si3N4) layers to extreme ultra-violet (EUV) resist and the variation of the line edge roughness (LER) of the EUV resist and Si3N4 pattern were investigated during etching of a Si3N4/EUV resist structure in dual-frequency superimposed CH2F2/N2/Ar capacitive coupled plasmas (DFS-CCP). The flow rates of CH2F2 and N2 gases played a critical role in determining the process window for ultra-high etch selectivity of Si3N4/EUV resist due to disproportionate changes in the degree of polymerization on the Si3N4 and EUV resist surfaces. Increasing the CH2F2 flow rate resulted in a smaller steady state CHxFy thickness on the Si3N4 and, in turn, enhanced the Si3N4 etch rate due to enhanced SiF4 formation, while a CHxFy layer was deposited on the EUV resist surface protecting the resist under certain N2 flow conditions. The LER values of the etched resist tended to increase at higher CH2F2 flow rates compared to the lower CH2F2 flow rates that resulted from the increased degree of polymerization.

  • PDF

A Study of Quench Behaviors in YBCO Flims for Superconducting Fault Current Limiter (기포발생에 따른 초전도 한류기용 YBCO 박막 퀜치특성 연구)

  • Kang, J.S.;Park, K.B.;Lee, B.W.;Oh, I.S.;Kim, H.R.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.796-798
    • /
    • 2002
  • In these days, the interruption capability of some circuit breakers, which are installed in the transmission systems, is getting lower than the magnitude of the fault current because of continuous increase of power demand and relatively short power line which was installed in forms of mesh network As a result of these situations, fault current limiters (FCLs) are strongly necessary. There are various types which is investigated around the world, and new power apparatuses that have been newly considered and developed by many manufactures. In this paper, we considered resistive superconducting fault current limiters with YBCO thin films. The resistive limiters utilize a transition of YBCO films from superconducting to normal state caused by exceeding the critical current. By means of newly occurred impedance, the fault current will be limited effectively. Generally, a few current path patterns are available for YBCO films to enhance the current limiting performance of YBCO films. In this paper. the meander-type and the bi-spiral-type were used for current paths of YBCO flims. When YBCO films are quenched into the normal state, bubbles could be observed on the surface of YBCO films. Using our high-speed camera, the number of bubbles and the size of bubbles could be visualized and the relation between bubbles and current density was analyzed. By means of moving pictures of bubbles, we observed how the quench extended or how the heat was conducted in films.

  • PDF

Enhancement of phagocytosis and cytotoxicity in macrophages by tumor-derived IL-18 stimulation

  • Xu, Henan;Toyota, Naoka;Xing, Yanjiang;Fujita, Yuuki;Huang, Zhijun;Touma, Maki;Wu, Qiong;Sugimoto, Kenkichi
    • BMB Reports
    • /
    • v.47 no.5
    • /
    • pp.286-291
    • /
    • 2014
  • Inoculation of mice with the murine NFSA cell line caused the formation of large tumors with necrotic tumor cores. FACS analysis revealed accumulations of $CD11b^+$ cells in the tumors. Microarray analysis indicated that the NFSA cells expressed a high level of the pro-inflammatory factor interleukin-18 (il-18), which is known to play a critical role in macrophages. However, little is known about the physiological function of IL-18-stimulated macrophages. Here, we provide direct evidence that IL-18 enhances the phagocytosis of RAW264 cells and peritoneal macrophages, accompanied by the increased expression of tumor necrosis factor (tnf-${\alpha}$), interleukin-6 (il-6) and inducible nitric oxide synthase (Nos2). IL-18-stimulated RAW264 cells showed an enhanced cytotoxicity to endothelial F-2 cells via direct cell-to-cell interaction and the secretion of soluble mediators. Taken together, our results demonstrate that tumor-derived IL-18 plays an important role in the phagocytosis of macrophages and that IL-18-stimulated macrophages may damage tumor endothelial cells.

Differential Roles of Lung Dendritic Cell Subsets Against Respiratory Virus Infection

  • Kim, Tae Hoon;Lee, Heung Kyu
    • IMMUNE NETWORK
    • /
    • v.14 no.3
    • /
    • pp.128-137
    • /
    • 2014
  • Respiratory viruses can induce acute respiratory disease. Clinical symptoms and manifestations are dependent on interactions between the virus and host immune system. Dendritic cells (DCs), along with alveolar macrophages, constitute the first line of sentinel cells in the innate immune response against respiratory viral infection. DCs play an essential role in regulating the immune response by bridging innate and adaptive immunity. In the steady state, lung DCs can be subdivided into $CD103^+$ conventional DCs (cDCs), $CD11b^+$ cDCs, and plasmacytoid DCs (pDCs). In the inflammatory state, like a respiratory viral infection, monocyte-derived DCs (moDCs) are recruited to the lung. In inflammatory lung, discrimination between moDCs and $CD11b^+$ DCs in the inflamed lung has been a critical challenge in understanding their role in the antiviral response. In particular, $CD103^+$ cDCs migrate from the intraepithelial base to the draining mediastinal lymph nodes to primarily induce the $CD8^+$ T cell response against the invading virus. Lymphoid $CD8{\alpha}^+$ cDCs, which have a developmental relationship with $CD103^+$ cDCs, also play an important role in viral antigen presentation. Moreover, pDCs have been reported to promote an antiviral response by inducing type I interferon production rather than adaptive immunity. However, the role of these cells in respiratory infections remains unclear. These different DC subsets have functional specialization against respiratory viral infection. Under certain viral infection, contextually controlling the balance of these specialized DC subsets is important for an effective immune response and maintenance of homeostasis.

Investigation of aerodynamic behaviour of a high-speed train on different railway infrastructure scenarios under crosswind

  • Jiqiang, Niu;Yingchao, Zhang;Zhengwei, Chen;Rui, Li;Huadong, Yao
    • Wind and Structures
    • /
    • v.35 no.6
    • /
    • pp.405-418
    • /
    • 2022
  • The aerodynamic behaviour of a CRH high-speed train under three infrastructure scenarios (flat ground, embankment, and viaduct) in the presence of a crosswind was simulated using a 1/8th scaled train model with three cars and the IDDES framework. The time-averaged and instantaneous flow field around the model were examined. The employed numerical algorithm was verified through a wind tunnel test, and the grid and timestep resolution analyses were conducted to ensure the reliability of the data. It was noted that the flow around the rail line was different under different infrastructure scenarios, especially in the case of the embankment, which degraded the aerodynamic performance of the train under the crosswind. The flow around the train on the flat ground and viaduct was different, although the aerodynamic performance of the train was similar in both cases. Moreover, the viaduct accidents were noted to have the most critical consequences, thereby requiring the most attention. The aerodynamic performance of the train on the windward track of the embankment under the crosswind was worse than that of the train on the leeward track. But for the other two infrastructure scenarios, the aerodynamic performance of the train on the windward track is relatively dangerous, which is mainly caused by the head car. These observations suggest that the aerodynamic behaviour of the train on an embankment under a crosswind must be carefully considered and that certain wind protection measures must be adopted around rail lines in windy areas.

A Method of Applying Work Relationships for a Linear Scheduling Model (선형 공정계획 모델의 작업 관계성 적용 방법)

  • Ryu, Han-Guk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.4
    • /
    • pp.31-39
    • /
    • 2010
  • As the linear scheduling method has been used since the Empire State Building linear schedule in 1929, it is being applied in various fields, such as construction and manufacturing. When addressing concurrent critical paths occurring in a linear construction schedule, empirical researches have stressed resource management, which should be applied for optimizing workflow, ensuring flexible work productivity and continuous resource allocation. However, work relationships have been usually overlooked in making the linear schedule from an existing network schedule. Therefore, this research analyzes the previous researches related to the linear scheduling model, and then proposes a method that can be applied for adopting the relationships of a network schedule to the linear schedule. To this end, this research considers the work relationships occurring in changing a network schedule into a linear schedule, and then confirms the activities movement phenomenon of linear schedule due to workspace change, such as physical floors change. As a result, this research can be used as a basic research in order to develop a system generating a linear schedule from a network schedule.