• Title/Summary/Keyword: critical energy

Search Result 2,303, Processing Time 0.038 seconds

Determination of the Kinetic Energy Release Originating from the Reverse Critical Energy in Unimolecular ion Dissociation

  • Yeh, In-Chul;Lee, Tae-Geol;Kim, Myung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.3
    • /
    • pp.241-245
    • /
    • 1994
  • A method has been developed to estimate the kinetic energy release originating from the reverse critical energy in unimolecular ion dissociation. Contribution from the excess energy was estimated by RRKM theory, the statistical adiabatic model and the modified phase space calculation. This was subtracted from the experimental kinetic energy release distribution (KERD) via deconvolution. The present method has been applied to the KERDs in $H_2$, loss from $C_6H_6^+$ and HF loss from ${CH_2CF_2}^+$. In the present formalism, not only the energy in the reaction coordinate but also the energy in some transitional vibrational degrees of freedom at the transition state is thought to contribute to the experimental kinetic energy release. Details of the methods for treating the transitional modes are found not to be critical to the final outcome. For a reaction with small excess energy and large reverse critical energy. KERD is shown to be mainly governed by the reverse critical energy.

An Overall Investigation of Break Simulators for LOCA Scenarios in Integral Effect Tests

  • Kim, Yeon-Sik;Park, Hyun-Sik
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.73-88
    • /
    • 2014
  • Various studies on the critical flow models for sub-cooled and/or saturated water were reviewed, especially on Fauske, Moody, and Henry for basic theoretical models; Zaloudek for insight into physical phenomena for a critical flow in an orifice type flow path; Sozzi & Sutherland for a critical flow test of saturated and sub-cooled water at high pressure for orifice and nozzles; and a Marviken test on a full-scale critical flow test. In addition, critical flow tests of sub-cooled water for the break simulators in integral effect test (IET) facilities were also investigated, and a hybrid concept using Moody's and Fauske's models was considered by the authors. In the comparison of the models for the selected test data, discussions of the effect of the diameters, predictions of the critical flow models, and design aspects of break simulator for SBLOCA scenarios in the IET facilities were presented. In the effect of diameter on the critical flow rate with respect to all dimensional scales, it was concluded that the effect of diameter was found irrespective of diameter sizes. In addition, the diameter effect on slip ratio affecting the critical flow rate was suggested. From a comparison of the critical flow models and selected test data, the Henry-Fauske model of the MARS-KS code was found to be the best model predicting the critical flow rate for the selected test data under study.

Determination of Critical Generator Group Using Accelerating Power and Synchronizing Power Coefficient in the Transient Energy Function Method

  • Chun, Yeong-Han
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.161-166
    • /
    • 2011
  • This paper proposes an algorithm for determining critical generator lists using accelerating power and synchronizing power coefficient (SPC), and critical generator group (CGG) from CGG candidates, which is a combination of critical generators. The accurate determination of CGG provides a more accurate energy margin while providing system operator with information of possible unstable generator group. Classical transient energy function (TEF) method selects the critical generators with big corrected kinetic energy of each generator at the moment of fault removal. However, the generator with small acceleration after fault, that is, the generator with small corrected kinetic energy, is also likely to belong to CGG if the generator has small synchronizing power. The proposed algorithm has been verified to be effective compared with the classical TEF method. We utilized the power system of Korean Electric Power Corporation(KEPCO) as a test system.

Generation of synthetic accelerograms using a probabilistic critical excitation method based on energy constraint

  • Bazrafshan, Arsalan;Khaji, Naser
    • Earthquakes and Structures
    • /
    • v.18 no.1
    • /
    • pp.45-56
    • /
    • 2020
  • The application of critical excitation method with displacement-based objective function for multi degree of freedom (MDOF) systems is investigated. To this end, a new critical excitation method is developed to find the critical input motion of a MDOF system as a synthetic accelerogram. The upper bound of earthquake input energy per unit mass is considered as a new constraint for the problem, and its advantages are discussed. Considering this constraint, the critical excitation method is then used to generate synthetic accelerograms for MDOF models corresponding to three shear buildings of 10, 16, and 22 stories. In order to demonstrate the reliability of generated accelerograms to estimate dynamic response of the structures, three target ground motions with considerable level of energy contents are selected to represent "real critical excitation" of each model, and the method is used to re-generate these ground motions. Afterwards, linear dynamic analyses are conducted using these accelerograms along with the generated critical excitations, to investigate the key parameters of response including maximum displacement, maximum interstory drift, and maximum absolute acceleration of stories. The results show that the generated critical excitations can make an acceptable estimate of the structural behavior compared to the target ground motions. Therefore, the method can be reliably implemented to generate critical excitation of the structure when real one is not available.

Application of artificial neural network for the critical flow prediction of discharge nozzle

  • Xu, Hong;Tang, Tao;Zhang, Baorui;Liu, Yuechan
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.834-841
    • /
    • 2022
  • System thermal-hydraulic (STH) code is adopted for nuclear safety analysis. The critical flow model (CFM) is significant for the accuracy of STH simulation. To overcome the defects of current CFMs (low precision or long calculation time), a CFM based on a genetic neural network (GNN) has been developed in this work. To build a powerful model, besides the critical mass flux, the critical pressure and critical quality were also considered in this model, which was seldom considered before. Comparing with the traditional homogeneous equilibrium model (HEM) and the Moody model, the GNN model can predict the critical mass flux with a higher accuracy (approximately 80% of results are within the ±20% error limit); comparing with the Leung model and the Shannak model for critical pressure prediction, the GNN model achieved the best results (more than 80% prediction results within the ±20% error limit). For the critical quality, similar precision is achieved. The GNN-based CFM in this work is meaningful for the STH code CFM development.

Use of near-fault pulse-energy for estimating critical structural responses

  • Chang, Zhiwang;Liu, Zhanhui;Chen, Zhenhua;Zhai, Changhai
    • Earthquakes and Structures
    • /
    • v.16 no.4
    • /
    • pp.415-423
    • /
    • 2019
  • Near-fault ground motions can impose particularly high seismic demands on structures due to the pulses that are typically observed in the velocity time-histories. In this study it is empirically found that the critical response can be estimated from the directions corresponding to the maximum (max) or minimum (min) pulse-energy. Determination of the pulse-energy requires removing of the high-frequency content. For achieving this, the wavelet analysis and the least-square-fitting (LSF) algorithm are adopted. Results obtained by the two strategies are compared and differences between them are analyzed. Finally, the relationship between the critical response and the response derived from directions having the max or min pulse-energy confirms that using the pulse-energy for deriving the critical response of the building structures is reasonable.

Predictions of the Marviken Subcooled Critical Mass Fuel Using the Critical Flow Scaling Parameters

  • Park, Choon-Kyung;Chun, Se-Young;Seok-Cho;Yang, Sun-Ku;Chung, Moon-Ki
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.522-527
    • /
    • 1997
  • A total of 386 critical flow data points from 19 runs of 27 runs in the Marviken Test were selected and compared with the predictions by the correlations based on the critical flow scaling parameters. The results show that the critical mass flux in the very large diameter pipe can be also characterized by two scaling parameters such as discharge coefficient and dimensionless subcooling( $C_{d, ref}$ and $\Delta$ $T^{*}$$_{sub}$). The agreement between the measured data and the predictions are excellent.t.ons are excellent.t.

  • PDF

Heat Transfer Characteristics of an Internally-Heated Annulus Cooled with R-134a Near the Critical Pressure

  • Hong, Sung-Deok;Chun, Se-Young;Kim, Se-Yun;Baek, Won-Pil
    • Nuclear Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.403-414
    • /
    • 2004
  • An experimental study of heat transfer characteristics near the critical pressure has been performed with an internally-heated vertical annular channel cooled by R-134a fluid. Two series of tests have been completed: (a) steady-state critical heat flux (CHF) tests, and (b) heat transfer tests for pressure reduction transients through the critical pressure. In the present experimental range, the steady-state CHF decreases with increase of the system pressure for fixed inlet mass flux and subcooling. The CHF falls sharply at about 3.8 MPa and shows a trend towards converging to zero as the pressure approaches the critical point of 4.059 MPa. The CHF phenomenon near the critical pressure does not lead to an abrupt temperature rise of the heated wall, because the CHF occurs at remarkably low power levels. In the pressure reduction transients, as soon as the pressure passes below the critical pressure from the supercritical pressure, the wall temperatures rise rapidly up to very high values due to the departure from nucleate boiling. The wall temperature reaches a maximum at the saturation point of the outlet temperature, and then tends to decrease gradually.

Transient Stability Analysis of Power System by Transient Energy Method (과도에너지법에 의한 전력계통의 과도안정도 해석에 관한 연구)

  • 김준현;설용태
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.32 no.2
    • /
    • pp.59-64
    • /
    • 1983
  • This paper deals with the transient energy method of transient stability analysis of multi-machine power system by improving the transfer conductance, the kinetic energy and the critical transient energy. The tranfer conductance is considered more correctly, the generators of system are seperated to two states (critical and the rest state)and the correction term of critical transient energy (to reference point) is added. This analysis is performed by digital computer simulation and the application of this method to two model systems has shown its superiority to other available methods.

  • PDF

The Effect of Categorizing Activity on Improving Critical Thinking to Meet Energy . Environment Issues (범주화 활동이 에너지 . 환경 쟁점에 대처하는 비판적 사고 개발에 미치는 영향)

  • Koo, Soo-Jeong;Pak, Sung-jae
    • Journal of The Korean Association For Science Education
    • /
    • v.17 no.2
    • /
    • pp.163-178
    • /
    • 1997
  • The purpose of this study is to investigate the effect of categorizing activities in lessons on improving critical thinking to meet energy environment issues in every day situation, supposing that there are not only scientific concepts but also critical thinking ability in scientific literacy to meet social controversies related with science intelligently. Categorizing Activity Program was developed and applied to the 10th grades(n=51) in Seoul for about one month. The program was consisted of two domains. They studied science concepts of various aspects of science, technology and society related with energy and environment in the first and second domain repectively, in the while, two critical tasks which include articles from newspapers and magazines were assigned to them for the development and evaluation of critical thinking abilities. The scores of critical thinking ability, the cognitive element, and critical thinking inclination, the affective element, were increased meaningfully(p<.05). In conclusion, categorizing activity as a strategy of concept attainment was effective in improving critical thinking for seeing various aspects with various view points needed in controversial issues related with energy and environment.

  • PDF