DOI QR코드

DOI QR Code

Application of artificial neural network for the critical flow prediction of discharge nozzle

  • Xu, Hong (Energy Technology R&D Division, Jinyuyun Energy Technology Co., Ltd.) ;
  • Tang, Tao (Energy Technology R&D Division, Jinyuyun Energy Technology Co., Ltd.) ;
  • Zhang, Baorui (Institute of Nuclear and New Energy Technology, Tsinghua University) ;
  • Liu, Yuechan (Department of Mathematics, Karlsruhe Institute of Technology (KIT))
  • Received : 2021.05.22
  • Accepted : 2021.08.25
  • Published : 2022.03.25

Abstract

System thermal-hydraulic (STH) code is adopted for nuclear safety analysis. The critical flow model (CFM) is significant for the accuracy of STH simulation. To overcome the defects of current CFMs (low precision or long calculation time), a CFM based on a genetic neural network (GNN) has been developed in this work. To build a powerful model, besides the critical mass flux, the critical pressure and critical quality were also considered in this model, which was seldom considered before. Comparing with the traditional homogeneous equilibrium model (HEM) and the Moody model, the GNN model can predict the critical mass flux with a higher accuracy (approximately 80% of results are within the ±20% error limit); comparing with the Leung model and the Shannak model for critical pressure prediction, the GNN model achieved the best results (more than 80% prediction results within the ±20% error limit). For the critical quality, similar precision is achieved. The GNN-based CFM in this work is meaningful for the STH code CFM development.

Keywords

References

  1. L. Yang, Z. Chen, W. Chen, Analysis of flow path blockage accident in cased assembly, Ann. Nucl. Energy 45 (2012) 8-13. https://doi.org/10.1016/j.anucene.2011.10.005
  2. M. Hofer, M. Buck, J. Starflinger, ATHLET extensions for the simulation of supercritical carbon dioxide driven power cycles, Kerntechnik 84 (5) (2019) 390-396. https://doi.org/10.3139/124.190075
  3. H. Xu, A.F. Badea, X. Cheng, Optimization of the nodalization of nuclear system thermal-hydraulic code applied on PKL benchmark, J. Nucl. Eng. Radiat. Sci. 147 (2021) 107732.
  4. H. Xu, A.F. Badea, X. Cheng, Sensitivity analysis of thermal-hydraulic models based on FFTBM-MSM two-layer method for PKL IBLOCA experiment, Ann. Nucl. Energy 147 (2020) 107732. https://doi.org/10.1016/j.anucene.2020.107732
  5. H. Xu, A.F. Badea, X. Cheng, Studies on the criterion for choking process in two-phase flow, Prog. Nucl. Energy 133 (2021) 103640. https://doi.org/10.1016/j.pnucene.2021.103640
  6. H.S. Isbin, J.E. Moy, A.J.R. Da Cruz, Two-phase, steam-water critical flow, Am. Ins. Chem. Eng. J. 3 (3) (1957) 361-365. https://doi.org/10.1002/aic.690030315
  7. R.E. Henry, H.K. Fauske, S.T. McComas, Two phase critical flow at low qualities Part I: experimental, Nucl. Sci. Eng. 41 (1) (1970) 79-91. https://doi.org/10.13182/NSE70-A20366
  8. E. Elias, G.S. Lelluche, Two-phase critical flow, Int. J. Multiphas. Flow 20 (Suppl) (1994) 91-168. https://doi.org/10.1016/0301-9322(94)90071-X
  9. S. Yin, N. Wang, X. Huang, Q. Wang, H. Wang, Characteristic of vapor leakage behavior from a pressurized pipeline system: experiment and model study, Int. J. Heat Mass Tran. 162 (2020) 120335. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120335
  10. H. Xu, A.F. Badea, X. Cheng, Analysis of two phase critical flow with a non-equilibrium model, Nucl. Eng. Des. 372 (2021) 110998. https://doi.org/10.1016/j.nucengdes.2020.110998
  11. H. Xu, A.F. Badea, X. Cheng, Development of a new full-range critical flow model based on non-homogeneous non-equilibrium model, Ann. Nucl. Energy 158 (2021) 108286. https://doi.org/10.1016/j.anucene.2021.108286
  12. T. Cong, G. Su, S. Qiu, W. Tian, Applications of ANNs in flow and heat transfer problems in nuclear engineering: a review work, Prog. Nucl. Energy 62 (2013) 54-71. https://doi.org/10.1016/j.pnucene.2012.09.003
  13. M. Gomez-Fernandez, K. Higley, A. Tokuhiro, K. Welter, W.K. Wong, H. Yang, Status of research and development of learning-based approaches in nuclear science and engineering: a review, Nucl. Eng. Des. 359 (2020) 110479. https://doi.org/10.1016/j.nucengdes.2019.110479
  14. R.A. Azim, Prediction of multiphase flow rate for artificially flowing wells using rigorous artificial neural network technique, Flow Meas. Instrum. 76 (2020) 101835. https://doi.org/10.1016/j.flowmeasinst.2020.101835
  15. C.L. Zhang, Generalized correlation of refrigerant mass flow rate through adiabatic capillary tubes using artificial neural network, Int. J. Refrig. 28 (4) (2005) 506-514. https://doi.org/10.1016/j.ijrefrig.2004.11.004
  16. C.L. Zhang, L.X. Zhao, Model-based neural network correlation for refrigerant mass flow rates through adiabatic capillary tubes, Int. J. Refrig. 30 (4) (2007) 690-698. https://doi.org/10.1016/j.ijrefrig.2006.10.005
  17. A.A. Aly, B. Saleh, A.M. Aljuaid, A.F. Alogla, M.M. Alharthi, Y.S. Hamed, Mass flow rate assessment in capillary tubes of refrigeration cycle powered by solar energy using back propagation artificial neural network, Int. J. Eng. Res. Technol. 12 (7) (2019) 965-976.
  18. J. Zhang, R.H. Chen, M.J. Wang, W.X. Tian, G.H. Su, S.Z. Qiu, Prediction of LBB leakage for various conditions by genetic neural network and genetic algorithms, Nucl. Eng. Des. 325 (2017) 33-43. https://doi.org/10.1016/j.nucengdes.2017.09.027
  19. Y.J. An, K.H. Yoo, M.G. Na, Y.S. Kim, Critical flow prediction using simplified cascade fuzzy neural networks, Ann. Nucl. Energy 136 (2020) 107047. https://doi.org/10.1016/j.anucene.2019.107047
  20. J.H. Park, Y.J. An, K.H. Yoo, M.G. Na, Leak flow prediction during loss of coolant accidents using deep fuzzy neural networks, Nuclear Eng. Technol. 53 (8) (2021) 2547-2555. https://doi.org/10.1016/j.net.2021.01.040
  21. G.L. Sozzi, W.A. Sutherland, Critical Flow of Saturated and Subcooled Water at High Pressure, General Electric Co., 1975, pp. 1-24. NEDO-13418.
  22. S. Ghoshray, More efficient genetic algorithm for solving optimization problems, in: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics vol. 5, 1995, pp. 4515-4520.
  23. F.H.F. Leung, H.K. Lam, S.H. Ling, P.K.S. Tam, Tuning of the structure and parameters of a neural network using an improved genetic algorithm, IEEE Trans. Neural Network. 14 (1) (2003) 79-88. https://doi.org/10.1109/TNN.2002.804317
  24. S. Ding, C. Su, J. Yu, An optimizing BP neural network algorithm based on genetic algorithm, Artif. Intell. Rev. 36 (2011) 153-162. https://doi.org/10.1007/s10462-011-9208-z
  25. H.J. Richter, Separated two-phase flow model: application to critical two-phase flow, Int. J. Multiphas. Flow 9 (1983) 511-530. https://doi.org/10.1016/0301-9322(83)90015-0
  26. C.F. Schwellnus, M. Shoukri, A two-fluid model for non-equilibrium two-phase critical discharge, Can. J. Chem. Eng. 69 (1991) 188-197. https://doi.org/10.1002/cjce.5450690122
  27. H.S. Hillbrath, W.P. Dill, W.A. Wacker, The choking pressure ratio of a critical flow venturi, J. Eng. Ind. 97 (4) (1975) 1251-1256. https://doi.org/10.1115/1.3438737
  28. F. Hardekopf, D. Mewes, Critical pressure ratio of two-phase flows, J. Loss Prev. Process. Ind. 1 (3) (1989) 134-140. https://doi.org/10.1016/0950-4230(88)80030-5
  29. G. Rudolph, Convergence analysis of canonical genetic algorithms, IEEE Trans. Neural Network. 5 (1) (1994) 96-101. https://doi.org/10.1109/72.265964
  30. F.J. Moody, Maximum two-phase vessel blowdown from pipes, Trans. ASME J. Trans. 88 (1966) 285-293. https://doi.org/10.1115/1.3691539
  31. H. Xu, Improvement of PWR (LOCA) Safety Analysis Based on PKL Experimental Data, Karlsruhe Institute of Technology, Dissertation, Karlsruhe, Germany, 2020.
  32. J.C. Leung, A generalized correlation for one-component homogeneous equilibrium flashing choked flow, AIChE J. 32 (10) (1986) 1743-1746. https://doi.org/10.1002/aic.690321019
  33. B.A. Shannak, Experimental investigation of critical pressure ratio in orifices, Exp. Fluid 33 (2002) 508-511. https://doi.org/10.1007/s00348-002-0438-3