References
- L. Yang, Z. Chen, W. Chen, Analysis of flow path blockage accident in cased assembly, Ann. Nucl. Energy 45 (2012) 8-13. https://doi.org/10.1016/j.anucene.2011.10.005
- M. Hofer, M. Buck, J. Starflinger, ATHLET extensions for the simulation of supercritical carbon dioxide driven power cycles, Kerntechnik 84 (5) (2019) 390-396. https://doi.org/10.3139/124.190075
- H. Xu, A.F. Badea, X. Cheng, Optimization of the nodalization of nuclear system thermal-hydraulic code applied on PKL benchmark, J. Nucl. Eng. Radiat. Sci. 147 (2021) 107732.
- H. Xu, A.F. Badea, X. Cheng, Sensitivity analysis of thermal-hydraulic models based on FFTBM-MSM two-layer method for PKL IBLOCA experiment, Ann. Nucl. Energy 147 (2020) 107732. https://doi.org/10.1016/j.anucene.2020.107732
- H. Xu, A.F. Badea, X. Cheng, Studies on the criterion for choking process in two-phase flow, Prog. Nucl. Energy 133 (2021) 103640. https://doi.org/10.1016/j.pnucene.2021.103640
- H.S. Isbin, J.E. Moy, A.J.R. Da Cruz, Two-phase, steam-water critical flow, Am. Ins. Chem. Eng. J. 3 (3) (1957) 361-365. https://doi.org/10.1002/aic.690030315
- R.E. Henry, H.K. Fauske, S.T. McComas, Two phase critical flow at low qualities Part I: experimental, Nucl. Sci. Eng. 41 (1) (1970) 79-91. https://doi.org/10.13182/NSE70-A20366
- E. Elias, G.S. Lelluche, Two-phase critical flow, Int. J. Multiphas. Flow 20 (Suppl) (1994) 91-168. https://doi.org/10.1016/0301-9322(94)90071-X
- S. Yin, N. Wang, X. Huang, Q. Wang, H. Wang, Characteristic of vapor leakage behavior from a pressurized pipeline system: experiment and model study, Int. J. Heat Mass Tran. 162 (2020) 120335. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120335
- H. Xu, A.F. Badea, X. Cheng, Analysis of two phase critical flow with a non-equilibrium model, Nucl. Eng. Des. 372 (2021) 110998. https://doi.org/10.1016/j.nucengdes.2020.110998
- H. Xu, A.F. Badea, X. Cheng, Development of a new full-range critical flow model based on non-homogeneous non-equilibrium model, Ann. Nucl. Energy 158 (2021) 108286. https://doi.org/10.1016/j.anucene.2021.108286
- T. Cong, G. Su, S. Qiu, W. Tian, Applications of ANNs in flow and heat transfer problems in nuclear engineering: a review work, Prog. Nucl. Energy 62 (2013) 54-71. https://doi.org/10.1016/j.pnucene.2012.09.003
- M. Gomez-Fernandez, K. Higley, A. Tokuhiro, K. Welter, W.K. Wong, H. Yang, Status of research and development of learning-based approaches in nuclear science and engineering: a review, Nucl. Eng. Des. 359 (2020) 110479. https://doi.org/10.1016/j.nucengdes.2019.110479
- R.A. Azim, Prediction of multiphase flow rate for artificially flowing wells using rigorous artificial neural network technique, Flow Meas. Instrum. 76 (2020) 101835. https://doi.org/10.1016/j.flowmeasinst.2020.101835
- C.L. Zhang, Generalized correlation of refrigerant mass flow rate through adiabatic capillary tubes using artificial neural network, Int. J. Refrig. 28 (4) (2005) 506-514. https://doi.org/10.1016/j.ijrefrig.2004.11.004
- C.L. Zhang, L.X. Zhao, Model-based neural network correlation for refrigerant mass flow rates through adiabatic capillary tubes, Int. J. Refrig. 30 (4) (2007) 690-698. https://doi.org/10.1016/j.ijrefrig.2006.10.005
- A.A. Aly, B. Saleh, A.M. Aljuaid, A.F. Alogla, M.M. Alharthi, Y.S. Hamed, Mass flow rate assessment in capillary tubes of refrigeration cycle powered by solar energy using back propagation artificial neural network, Int. J. Eng. Res. Technol. 12 (7) (2019) 965-976.
- J. Zhang, R.H. Chen, M.J. Wang, W.X. Tian, G.H. Su, S.Z. Qiu, Prediction of LBB leakage for various conditions by genetic neural network and genetic algorithms, Nucl. Eng. Des. 325 (2017) 33-43. https://doi.org/10.1016/j.nucengdes.2017.09.027
- Y.J. An, K.H. Yoo, M.G. Na, Y.S. Kim, Critical flow prediction using simplified cascade fuzzy neural networks, Ann. Nucl. Energy 136 (2020) 107047. https://doi.org/10.1016/j.anucene.2019.107047
- J.H. Park, Y.J. An, K.H. Yoo, M.G. Na, Leak flow prediction during loss of coolant accidents using deep fuzzy neural networks, Nuclear Eng. Technol. 53 (8) (2021) 2547-2555. https://doi.org/10.1016/j.net.2021.01.040
- G.L. Sozzi, W.A. Sutherland, Critical Flow of Saturated and Subcooled Water at High Pressure, General Electric Co., 1975, pp. 1-24. NEDO-13418.
- S. Ghoshray, More efficient genetic algorithm for solving optimization problems, in: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics vol. 5, 1995, pp. 4515-4520.
- F.H.F. Leung, H.K. Lam, S.H. Ling, P.K.S. Tam, Tuning of the structure and parameters of a neural network using an improved genetic algorithm, IEEE Trans. Neural Network. 14 (1) (2003) 79-88. https://doi.org/10.1109/TNN.2002.804317
- S. Ding, C. Su, J. Yu, An optimizing BP neural network algorithm based on genetic algorithm, Artif. Intell. Rev. 36 (2011) 153-162. https://doi.org/10.1007/s10462-011-9208-z
- H.J. Richter, Separated two-phase flow model: application to critical two-phase flow, Int. J. Multiphas. Flow 9 (1983) 511-530. https://doi.org/10.1016/0301-9322(83)90015-0
- C.F. Schwellnus, M. Shoukri, A two-fluid model for non-equilibrium two-phase critical discharge, Can. J. Chem. Eng. 69 (1991) 188-197. https://doi.org/10.1002/cjce.5450690122
- H.S. Hillbrath, W.P. Dill, W.A. Wacker, The choking pressure ratio of a critical flow venturi, J. Eng. Ind. 97 (4) (1975) 1251-1256. https://doi.org/10.1115/1.3438737
- F. Hardekopf, D. Mewes, Critical pressure ratio of two-phase flows, J. Loss Prev. Process. Ind. 1 (3) (1989) 134-140. https://doi.org/10.1016/0950-4230(88)80030-5
- G. Rudolph, Convergence analysis of canonical genetic algorithms, IEEE Trans. Neural Network. 5 (1) (1994) 96-101. https://doi.org/10.1109/72.265964
- F.J. Moody, Maximum two-phase vessel blowdown from pipes, Trans. ASME J. Trans. 88 (1966) 285-293. https://doi.org/10.1115/1.3691539
- H. Xu, Improvement of PWR (LOCA) Safety Analysis Based on PKL Experimental Data, Karlsruhe Institute of Technology, Dissertation, Karlsruhe, Germany, 2020.
- J.C. Leung, A generalized correlation for one-component homogeneous equilibrium flashing choked flow, AIChE J. 32 (10) (1986) 1743-1746. https://doi.org/10.1002/aic.690321019
- B.A. Shannak, Experimental investigation of critical pressure ratio in orifices, Exp. Fluid 33 (2002) 508-511. https://doi.org/10.1007/s00348-002-0438-3