• 제목/요약/키워드: critical clearing time

검색결과 24건 처리시간 0.029초

객체지향기법을 적용한 하이브리드 과도안정도 해석 (Hybrid Transient Stability Analysis Using Object-oriented method)

  • 박지호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.451-452
    • /
    • 2007
  • In this paper, we simulate power system transient stability using object-oriented programming(OOP). OOP is a more flexible method than procedual programming. There are several advantages in dynamic system simulation using OOP. We also calculate critical fault clearing time using energy functions for detailed models.

  • PDF

DFIG 풍력터빈이 연계된 전력계통의 CCT 영향분석 (CCT Analysis of Power System Connected to DFIG Wind Turbine)

  • 서규석;박지호
    • 한국산학기술학회논문지
    • /
    • 제14권5호
    • /
    • pp.2388-2392
    • /
    • 2013
  • 풍력발전시스템은 기존의 발전시스템과 매우 다르다. 그러므로 전력계통에 풍력시스템을 연계하기 위해서는 동적특성에 대한 연구가 필요하다. 풍력발전기의 안정도해석은 전력계통의 운영에 있어서 중요 쟁점이다. 기존의 동기발전기만으로 구성된 전력계통의 위상각 안정도는 풍력발전기가 포함되면 그 결과가 달라진다. 즉, 풍력터빈에 연계된 발전기는 대부분 비동기인 유도발전기이기 때문이다. 위상각의 동기화 여부로 판별하는 위상각 안정도는 임계고장제거시간(CCT)을 계산하여 평가한다. 계통해석용 풍력터빈의 모델은 다양하여 그 해석에 어려움이 있으나 지금은 크게 4가지 타입으로 표준화가 되어있다. 본 논문에서는 PSS/E-32에서 제공하는 풍력터빈의 3번째 표준모델인 DFIG(Doubly-Fed induction Generator)모델을 이용하여 풍력단지가 연계된 전력계통의 CCT를 풍력단지의 위치와 용량을 고려하여 분석한다.

Identification of Correlative Transmission Lines for Stability Prediction

  • Cho, Yoon-Sung;Gilsoo Jang;Kwon, Sae-Hyuk;Yanchun Wang
    • KIEE International Transactions on Power Engineering
    • /
    • 제11A권4호
    • /
    • pp.15-20
    • /
    • 2001
  • Power system stability is correlated with system structure, disturbances and operating conditions, and power flows on transmission lines are closely related with those conditions. This paper proposes a methodology to identify correlative power flows for power system transient and small-signal stability prediction. In transient stability sense, the Critical Clearing Time is used to select some dominant contingencies, and Transient Stability Prediction index is proposed for the quantitative comparison. For small-signal stability discusses a methodology to identify crucial transmission lines for stability prediction by introducing a sensitivity factor based on eigenvalue sensitivity technique. On-line monitoring of the selected lines enables to predict system stability in real-time. Also, a procedure to make a priority list of monitored transmission lines is proposed. The procedure is applied to a test system, and it shows capabilities of the proposed method.

  • PDF

전력계통의 안정도 진단이 가능한 선로 선정에 관한 연구 (Identification of Correlative Transmission Lines for Stability Diagnosis of Power System)

  • 조윤성;장길수;권세혁
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제52권5호
    • /
    • pp.271-278
    • /
    • 2003
  • Power system stability is correlated with system structure, disturbances and operating conditions, and power flows on transmission lines are closely related with those conditions. This paper proposes a methodology to identify correlative power flows for power system transient and small-signal stability prediction. In transient stability sense, the Critical Clearing Time is used to select some dominant contingencies, and Transient Stability Prediction index is proposed for the quantitative comparison. For small-signal stability, this paper discusses a methodology to identify crucial transmission lines for stability Prediction by introducing a sensitivity factor based on eigenvalue sensitivity technique. On-line monitoring of the selected lines enables to predict system stability in real-time. Also, a Procedure to make a priority list of monitored transmission lines is proposed. The procedure is applied to a test system and the KEPCO systems in the year of 2003 and it shows capabilities of the proposed method

A Practical Exciter Model Reduction Approach For Power System Transient Stability Simulation

  • Kim, Soobae
    • 조명전기설비학회논문지
    • /
    • 제29권10호
    • /
    • pp.89-96
    • /
    • 2015
  • Explicit numerical integration methods for power system transient stability simulation require very small time steps to avoid numerical instability. The EXST1 exciter model is a primary source of fast dynamics in power system transients. In case of the EXST1, the required small integration time step for entire system simulation increases the computational demands in terms of running time and storage. This paper presents a practical exciter model reduction approach which allows the increase of the required step size and thus the method can decrease the computational demands. The fast dynamics in the original EXST1 are eliminated in the reduced exciter model. The use of a larger time step improves the computational efficiency. This paper describes the way to eliminate the fast dynamics from the original exciter model based on linear system theory. In order to validate the performance of the proposed method, case studies with the GSO-37 bus system are provided. Comparisons between the original and reduced models are made in simulation accuracy and critical clearing time.

중요부하를 갖는 ESS의 무효전력 P&O 단독운전 검출 기법 (Reactive Power P&O Anti-islanding Method of ESS with Critical Load)

  • 박성열;권민호;강수한;최세완
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2016년도 전력전자학술대회 논문집
    • /
    • pp.213-214
    • /
    • 2016
  • 중요부하를 갖는 ESS용 인버터는 정전 발생 시에도 부하에 안정적인 전원을 공급해야 한다. 이를 위하여 모드전환 시 과도상태를 최소화하면서 clearing time에도 부하에 안정적인 전압을 공급할 수 있는 간접전류제어 기법이 연구된 바 있다. 그러나 계통연계 시에도 전압을 제어해주기 때문에 단독운전 시 NDZ을 벗어나지 않아, 기존 알고리즘으로는 단독운전을 검출하기 어렵다는 문제가 있다. 본 논문에서는 모드 전환 시 과도상태를 최소화하면서 단독운전 검출 전에도 부하 전압을 안정하게 제어할 수 있는 간접전류제어 기반 인버터에서 NDZ이 없는 무효전력 P&O 단독운전 검출 기법을 제안한다.

  • PDF

풍력발전설비 및 HVDC가 도입된 제주도 계통에 대한 안정도 해석 (Stability Analysis of Jeju Power System with Wind Turbine Generators and HVDC)

  • 김도형;김재언
    • 전기학회논문지
    • /
    • 제57권11호
    • /
    • pp.1897-1904
    • /
    • 2008
  • In this paper, the method for effective stability analysis of Jeju power system in 2011 is proposed. The stability analysis of Jeju power system was carried out by using proposed method In case of Jeju power system with wind turbine generators or without wind turbine generators, including CSC HVDC or VSC HVDC. The steady-state stability is validated by SCR and ESCR, PV curve, QV curve. And the transient stability is analyzed by CCT(Critical Clearing Time). VSC HVDC has more advantages than CSV HVDC on the stability. Also, Jeju power system without wind turbine generators has more advantages than Jeju power system with Wind Turbine Generators on the stability.

Rough Fuzzy Control of SVC for Power System Stability Enhancement

  • Mishra, Yateendra;Mishra, Sukumar;Dong, Zhao Yang
    • Journal of Electrical Engineering and Technology
    • /
    • 제3권3호
    • /
    • pp.337-345
    • /
    • 2008
  • This paper presents a new approach to the design of a rough fuzzy controller for the control loop of the SVC (static VAR system) in a two area power system for stability enhancement with particular emphasis on providing effective damping for oscillatory instabilities. The performances of the rough fuzzy and the conventional fuzzy controller are compared with that of the conventional PI controller for a variety of transient disturbances, highlighting the effectiveness of the rough fuzzy controller in damping the inter-area oscillations. The effect of the rough fuzzy controller in improving the CCT (critical clearing time) of the two area system is elaborated in this paper as well.

풍력발전시스템이 연계된 계통의 과도안정성에 영향을 미치는 요소 (Factors Influencing Transient Stability in Network Connected to Wind Power Generation System)

  • 김세호;오성보;고성민;안재현;이수묵;장시호;이효상
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 A
    • /
    • pp.535-536
    • /
    • 2006
  • This paper reports investigation into the factors that influence the transient behavior of the wind power generation system following network fault conditions. It is shown that the critical clearing time(CCT) can be affected by various factors contributed by the host network. Such factors include capacity of wind power, power factor, the length of the interfacing line, etc. This investigation is conducted en a simulated grid-connected wind farm using Digsilent Power Factory.

  • PDF

한전계통에 대한 안정화제어 방안의 적용연구 (An Application Study of System Stabilizing Control Scheme by Switching-over Control)

  • 김태균;조강욱;김용학;김일동;추진부
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 D
    • /
    • pp.1109-1111
    • /
    • 1997
  • The purpose of this paper is to analyze the effects of switching-over control for power system stabilization. Switching-over control is applied to western part of korea electric power system to improve transient stability and short-circuit capacity. It's effectiveness is demonstrated in terms of fault current level and critical clearing time which is quantitative evaluation means of transient stability. The effect of generator tripping for power system stabilization is also presented.

  • PDF