• 제목/요약/키워드: crevice

검색결과 142건 처리시간 0.024초

430 스테인리스강의 틈부식 발생기구에 대한 연구 (A Study on the Mechanism of Crevice Corrosion for 430 Stainless Steel)

  • 백신영;나은영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권3호
    • /
    • pp.447-452
    • /
    • 2003
  • Crevice corrosion is localized form of corrosion usually associated with a stagnant solution on the micro-environmental level. Such stagnant micro environments tend to occur in crevices (shielded areas) such as those formed under gaskets washers insulation material. fastener heads. surface deposits. disbonded coatings. threads. lap joints and clamps. Crevice corrosion is initiated by changes in located electrochemical reaction within the crevice such as a) depletion of inhibitor in the crevice b) depletion of oxygen in the crevice c) a shift to acid conditions in the crevice and d) build-up of aggressive ion species (e.g chloride) in the crevice. In this study. the mechanism of crevice corrosion for Type 430 stainless steel is investigated undercondition that the size of specimen is $15{\times}20\{times}3mm$, in 1N $H_2SO_4$ + 0.05N NaCl solution. and the artificial crevice gap size of 3 x 0.2 x 15 mm. Crevice corrosion is measured under applied potential -300mV(SCE) to the external surface. The obtained result of this study showed that 1) the induced time for initiation of crevice is 750 seconds. 2) potential of the crevice was about from -320mV to -399mV. which is lower than that of external surface potential of -300mV It is considered that potential drop in the crevice is one of mechanisms for the crevice corrosion

Crevice chemistry and corrosion in high temperature water: A review

  • Young-Jin Kim;Chi Bum Bahn;Seung Heon Baek;Wonjun Choi;Geun Dong Song
    • Nuclear Engineering and Technology
    • /
    • 제56권8호
    • /
    • pp.3112-3122
    • /
    • 2024
  • Crevice corrosion is a localized attack of metal that occurs in occluded areas of materials as a result of a degradation of the oxide passivity on the metal surface in contact with stagnant environments. Materials suffer crevice corrosion when generally the crevice opening gap is so narrow that the migration or diffusion of ionic species into the crevice can be restricted and consequently results in the production of aggressive crevice solutions and differential aeration conditions over time. Among several factors affecting the crevice corrosion, differential aeration causing oxygen depletion associated with the geometry of components, acidification, and accumulation of aggressive species (e.g., Cl-, SO4-2, NO3- ) in the crevice solution become main aspects of the mechanism of the crevice corrosion. Thus, controlling such factors is most critically necessary to either prevents or terminates the crevice corrosion. This paper covers electrochemical aspects of the crevice corrosion, roles of critical factors affecting the crevice corrosion, and electrochemical processes of impurity species in the crevice in high temperature water. A better and clear understanding of mechanisms of the crevice corrosion is important to develop the protection and mitigation technology against the crevice corrosion in order for maintaining the integrity and longevity of structural components at various industries

스테인리스강 열교환기의 틈부식 방지에 관한 연구 (Study on the Prevention of Crevice Corrosion for a Stainless Steel Heat Exchanger)

  • 임우조;윤병두
    • 수산해양교육연구
    • /
    • 제17권1호
    • /
    • pp.106-114
    • /
    • 2005
  • This paper is a study on the prevention of crevice corrosion for a stainless steel heat exchanger in various pH solutions and with Cl ion concentrations. The electrochemical polarization test and crevice corrosion test of STS 304 for a heat exchanger were carried out. The crevice corrosion aspect, a passive behavior, crevice corrosion behavior, and corrosion protection characteristics of STS 304 using Al-alloy and Mg-alloy galvanic anode were considered. The main results are as follows: 1. The crevice corrosion of STS 304 occurs in the crevice and this corrosion increases pitting according to depth direction. On the other hand, the exterior crevice becomes passive. 2. With changing from a neutral to acid environment and increasing Cl ion concentration, the pitting potential of STS 304 lowers, and thus the crevice corrosion of STS 304 is sensitive. 3. The cathodic protection potential of STS 304 in the crevice is cathodically polarized by increasing Cl ion concentration. Therefore, an Al-alloy galvanic anode is more suitable than a Mg-alloy galvanic anode to protect the crevice corrosion of STS 304.

유체환경 중에서 연강재의 간극부식에 관한 연구 (Study on the Crevice Corrosion of Mild Steel in Fluid Environment)

  • 임우조;윤병두
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2000년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.373-378
    • /
    • 2000
  • The crevice corrosion of local corrosion occur when the gap exist on metal surface. This crevice corrosion happen to region such as flange of pipe, contact part of casing, under gasket and packing, between valve disk and seat of pump etc. Especially The crevice corrosion of mild steel(SS 400) get serious. This paper was studied on the crevice corrosion of SS 400 in fluid environment. In $0\%,\;2\%,\;3.5\%,\;5\% NaCl$ solution, the aspect of the crevice corrosion and polarization behavior under the crevice corrosion was investigated. And Weight loss rate of SS 400 with crevice and non-crevice was measured according to the NaCl concentration. The main results obtained are as follows : 1) Under crevice corrosion, the corrosion potential become less noble as the concentration of NaCl solution increased. 2) The current density under open circuit potential was high drained as concentration of NaCl solution increased by $3.5\%$ but the concentration increased over $3.5\%$, the current density was low drained. 3) The weight loss rate of SS 400 was increased as concentration of NaCl solution Increased by $3.5\%$, but the concentration increased over $3.5\%$, that of SS 400 was decreased. 4) Effect of oxygen for crevice corrosion in the concentration of $3.5\%$ NaCl solution become sensitive than that $0\%$ NaCl solution.

  • PDF

A Study on the Crevice Corrosion for Ferritic Stainless Steel by Micro Capillary Tube Method

  • Na Eun-Young;Ko Jae-Yong;Baik Shin-Young
    • 전기화학회지
    • /
    • 제7권4호
    • /
    • pp.179-182
    • /
    • 2004
  • The aim of this study is to investigate the initiation and propagation of crevice corrosion for ferritic stainless steel in artificial crevice based on micro capillary tube method. The 430 stainless steel in artificial crevice is potentiostatically polarized in different sodium chloride solutions. Potentiodynamic and potentiostatic polarization data were measured in situ. The potentials in the crevice were measured by depth profile using the 0.04 mm diameter micro capillary tube inserted in the crevice. The potentials in the crevice ranged from -220 mV to -360 mV vs SCE from opening to bottom of crevice, which are lower than the external surface potential, -200 mV vs SCE. Such a potential drop induced the change of the metal surface state from passive to active. The surface of metal is located in passive state in -200 mV but the inner surface keeps active state below -220 mV, Thus these results show that the It drop mechanism in the crevice was more objective for evaluation and the method was easier to reproduce. Therefore the potential drop is one of the reasons for crevice corrosion by measuring the potentials in narrow crevice with a new micro measuring system.

틈 내 전위측정을 통한 Alloy 600 및 Alloy 690의 틈부식 거동과 재부동태 특성 (Crevice Corrosion Behavior by Measuring the Potential Inside the Crevice and Repassivation Characteristics of Alloy 600 and Alloy 690)

  • 오세정;이재봉
    • 한국표면공학회지
    • /
    • 제40권2호
    • /
    • pp.82-90
    • /
    • 2007
  • Crevice corrosion is the accelerated attack occurred in the occluded cell under a crevice on the metal surface. Crevice corrosion behaviors of nickel-based alloys such as Alloy 600 and Alloy 690 were investigated in acidic solution with different chloride ion concentrations. Tests were carried out using the specially designed crevice cell with a very narrow Luggin capillary assembly to measure the potential inside the crevice. It is believed that crevice corrosion in active/passive system like nickel-based alloys has much to do with the properties of passive film and its repassivation characteristics, investigated by the capacitance measurement and by the abrading electrode technique, respectively. An attempt was made to elucidate the relationship between crevice corrosion behaviors, properties of passive film and its repassivation kinetics. Results showed that repassivation rate parameter $n1{\leq}0.6$ and/or $n2{\leq}0.5$ indicated the possible occurrence of crevice corrosion.

해양환경중에서 SS400강재의 간극부식거동에 관한 연구 (Study on the Crevice Corrosion Behavior of SS 400 in Marine Environment)

  • 임우조;정기철;안석환;윤병두
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2000년도 추계학술대회 논문집(Proceeding of the KOSME 2000 Autumn Annual Meeting)
    • /
    • pp.1-6
    • /
    • 2000
  • This paper was studied on the crevice corrosion behavior of SS 400 in marine environment. In 0%, 2%, 3.5%, 5% NaCl solution, the aspect of the crevice corrosion and polarization behavior under the crevice corrosion was investigated. And Weight loss rate of SS 400 with crevice and non-crevice was measured according to the NaCl concentration. The main results obtained are as follows : 1) Under crevice corrosion, the corrosion potential become less noble as the concentration of NaCl solution increased. 2) The current density under open circuit potential was high drained as concentration of NaCl solution increased by 3.5% but the concentration increased over 3.5%, the current density was low drained. 3) The weight loss rate of SS400 was increased as concentration of NaCl solution increased by 3.5% but the concentration increased over 3.5%, that of SS400 was decreased.

  • PDF

Prevention of Crevice Corrosion of STS 304 Stainless Steel by a Mg-alloy Galvanic Anode

  • Lim, U.J.;Yun, B.D.;Kim, J.J.
    • Corrosion Science and Technology
    • /
    • 제5권3호
    • /
    • pp.90-93
    • /
    • 2006
  • Prevention of crevice corrosion was studied for STS 304 stainless steel using a Mg-alloy galvanic anode in solutions with various specific resistivity. The crevice corrosion and corrosion protection characteristics of the steel was investigated by the electrochemical polarization and galvanic corrosion tests. Experimental results show that the crevice corrosion of STS 304 stainless steel does not occur in solutions of high specific resistivity, but it occurs in solutions of low specific resistivity like in solutions with resistivities of 30, 60 and $115{\Omega}{\cdot}m$. With decreasing specific resistivity of the solution, the electrode potential of STS 304 stainless steel in the crevice is lowered. The potential of STS 304 stainless steel in the crevice after coupling is cathodically polarized more by decreasing specific resistivity indicating that the crevice corrosion of STS 304 stainless steel is prevented by the Mg-alloy galvanic anode.

해양환경 중에서 SS 400 강제의 간극부식거동에 관한 연구 (Study on the Crevice Corrosion Behavior of 55400 in Marine Environment)

  • 임우조;윤병두
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권6호
    • /
    • pp.1336-1340
    • /
    • 2001
  • Due to increase of air pollution substance, such as $SO_2$,$SO_3$, H2S ,CO, HCI, $Cl_2$ and so on, the operating environment of mechanical equipment and facilities like generating plants, ships, metal structure etc., are acidified and corroded. In these environments, the crevice corrosion of marine facilities frequently occurs at crevice like jointed bolt, gasket or sealant, riveted plates, contact of metal with non-metallic solids etc. Therefore, this paper was studied on the crevice corrosion behavior of mild steel(SS 400) in marine environment. In a variety of NaCl solutions, the aspect of he .crevice corrosion and polarization behavior under the crevice corrosion was investigated. The main results obtained are as follows: 1) Under crevice corrosion, the open circuit potential become less treble as the concentration of NaCl solution increased. 2) The corrosion current density of mild steel was high drained as the concentration of NaCl solution increased by 3.5%, but in the concentration increased over 3.5%, the corrosion current density was low drained. 3) The crevice corrosion is more sensitive to the synergy effect of dissolved oxygen and NaCl.

  • PDF

Micro Capillary Tube 방법을 이용한 430 스테인레스강 틈의 폭변화에 따른 틈부식의 전기화학적 평가 (An Electrochemical Evaluation on the Crevice Corrosion of 430 Stainless Steel with Variation of Crevice Wide by Micro Capillary Tubing Method)

  • 나은영
    • 전기화학회지
    • /
    • 제6권4호
    • /
    • pp.250-254
    • /
    • 2003
  • 본 연구는 전기화학적 실험측정으로 페라이트계 430스테인레스강 시험편에 인위적으로 틈을 형성시켰다. 부식용액은 IN $H_2SO_4+0.1N\;NaCl$ 전해액을 사용하였고, 각 시험편의 틈의 크기를 달리하였다. 전기화학적 평가방법은 -600mV/5CE에서 정방향으로 +1,200mV/SCE까지 주사속도 600mV/hr로 동전위 분극시험을 실시하여 부식전위, 부동태 전류밀도 등의 부식거동을 분석하였다. 그리고 정전위 분극시험을 실시하여 부동태 구간 전위 -200mV/SCE를 일정하게 인가 한 후, 틈내에 부동태 전류밀도와 틈부식 발생시간을 계측하였다 실험방법에 있어 Microcapillary tube(MCT)를 이용한 방법으로 틈내 각 지점의 전위를 틈 깊이에 따른 틈내부의 전위강하(IR Drop)에 주목하고, 575 430 스테인레스강 금속에 대한 분극특성과 연계하므로써 틈부식의 발생 원인을 '전위의 이동'의 관점에서 규명 하였다.