• Title/Summary/Keyword: creep strength

Search Result 431, Processing Time 0.026 seconds

Long Time Creep Strength and Life Prediction of Steam Turbine Rotor Steel by Initial Strain Method (화력발전용 로터강의 초기 변형률법에 의한 장시간 크리프 수명 및 강도 예측)

  • 오세규;정순억
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1321-1329
    • /
    • 1993
  • Long time creep strength and life prediction of 1% Cr-Mo-V and 12% Cr rotor steel were performed by using round-bar type specimens under static load at 500-600.deg. C TTP (time temperature parameter), MCM (minimum commitment method) and ISM (initial strain method newly devised) as life prediction methods were investigated, and the results could be summarized as follows. (1) The minimum parameter of SEE (standard error) by TTP was proved as LMP (larson-miller parameter), and the minimum parameter of RMS (root mean squares), by data less than 10$^{3}$hrs was MHP (manson-haferd parameter). (2) The parameters of the minimum and the maximum strength values predicted in $10^{5}$hrs creep life of 1% Cr-Mo-V steel by TTP were LMP and MSP, respectively. In case of 12% Cr steel above $550^{\circ}C$ OSDP (orr-sherby-dorn parameter) was minimum and MSP (manson-succop parameter) was maximum, but below $550^{\circ}C$, the inverse phenomena was observed. On the other hand the creep strengths before $10^{3}hrs$ life by MCM were similar to those by TTP, but the strengths after $10^{3}hrs$ life were 10-25% lower than those by TTP. (3) Creep strengths by ISM were maximum 5% lower than those by TTP. Because $10^{5}hrs$ strengths were similar to those of the lower band by TTP, the ISM was safer than the TTP.

Creep Life Prediction of Aircraft Gas Turbine material by ISM (ISM에 의한 항공기용 가스터빈 재료의 크리프 수명예측)

  • 공유식
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.3
    • /
    • pp.43-48
    • /
    • 2001
  • In this paper, the real-time prediction of high temperature creep strength and creep for nickel-based superalloy Udimet 720 (high-temperature and high-pressure gas turbine engine materials) was performed on round-bar type specimens under pure load at the temperatures of 538, 649 and 704$^{\circ}C$. The predictive equation of ISM creep has better reliability than that of LMP and LMP-ISM, and its reliability is getting better for long time creep prediction ($10^3~10^5$h).

  • PDF

Evaluation of Drying Shrinkage and Creep Characteristics by Strength Differences of Concrete Mixed with Admixture (혼화재료 혼입 콘크리트 강도 차에 따른 건조수축 및 크리프 특성 평가)

  • Park, Dong-Cheon;Song, Hwa-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.199-200
    • /
    • 2021
  • In the study, creep and dry shrinkage characteristics were evaluated to determine the material properties necessary for structural analysis such as column shortening and differential drying shrinkage. All the experiments were conducted in an constant temperature and humidity room. The mechanical properties as well as the specific creep and ultimate dry shrinkage values were derived. In addition the characteristics of the physical value of the high-strength fiber reinforced concrete were considered.

  • PDF

A novel dual stress/strain-controlled direct simple shear apparatus to study shear strength and shear creep of clay

  • Chen Ge;Zhu Jungao;Wang Tao;Li Jian;Lou Qixun;Li Tao
    • Geomechanics and Engineering
    • /
    • v.37 no.6
    • /
    • pp.615-627
    • /
    • 2024
  • Direct simple shear test is an effective method to measure strength and deformation properties of soil. However, existing direct simple shear apparatus have some shortcomings. The paper has developed a novel dual stress/strain-controlled direct simple shear apparatus. The novel apparatus has the following advantages: A rectangular specimen is used that effectively avoid common issues associated with conventional cylindrical specimens, such as specimen tilting. The utilization of deformation control rods ensures a uniform shear deformation of the specimen. Vertically integrated force transmission structure is improved that avoids issues arising from changes in pivot points due to lever tilting. Incorporating this novel direct simple shear apparatus, shear strength and shear creep tests of clay were performed. Shear strength parameters and shear creep behaviors are analyzed. The results of these experiments show that the novel apparatus can measure accurately the shear rheological properties of soil. This study provides strong guidance for studying the mechanical properties of soil in engineering practice.

Composite Action in Masonry Columns Due to Damage and Creep Interaction (손상과 크리프의 상호작용에 의한 조적조 기둥의 복합거동)

  • Kim, Jung Joong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.5 no.2
    • /
    • pp.27-32
    • /
    • 2014
  • Since the collapse of historical masonry structures in Europe in the late 1990's, the interests in understanding the long-term effect of masonry under sustained compressive stresses have increased. That requires combining the significance of time-dependent effects of creep with the effect of damage due to overstress to realize the evolution of cracks and then failure in masonry. Meanwhile, composite analysis of masonry columns was proven effective for realizing ultimate strength capacity of masonry column. In this study, a simplified mechanical model with step-by-step in time analysis was proposed to incorporate the interaction of damage and creep to estimate the maximum stress occurred in masonry. It was examined that the interaction of creep and damage in masonry can accelerate the failure of masonry.

Creep and Shrinkage of High Performance/High Strength Concrete

  • Suksawang, N.;Nassif, H.;Mohamed, A.;Hwang, Eui-Seung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.529-532
    • /
    • 2006
  • This paper presents results from creep and shrinkage tests performed on different High Strength Concrete (HSC) mixes (with compressive strengths up to 90 MPa). Results were compared with those from various Code prediction models. The effects of pozzolanic materials on the creep and shrinkage were also investigated. Results show that while fly ash increases the compressive creep of concrete, silica fume decreases it. Moreover, current creep and shrinkage prediction models need to be revised for the HSC mixture.

  • PDF

Relationship between Creep Characteristic Values and Rupture time in STS304 Stainless Steels (스테인리스강의 크리프 특성치와 파단시간과의 관계)

  • KONG YU-SIK;KIM SEON-JIN;LEE BAE-SUB
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.228-233
    • /
    • 2004
  • The characteristics of the probability distribution for mechanical properties, e.g. tensile strength, reduction of area ana elongation, for STS304 stainless steel in elevated temperature were investigated from tensile test performed by constant cross head speea controls with 1mm/min, Recently, in order to clarify the strengthening mechanisms at high temperature, a new scheme to improve high temperature mechanical properties is desired. Therefore, the test ,technique development of high temperature creep behaviors for this material is very important. In this paper, the creep praperties and creep life prediction by Larson-Miller parameter method for STS304 stainless steel to be used for other high temperature components were presented at the elevated temperatures of 600, 650 and $700^{\circ}C$.

  • PDF

Mechanical testing of the behavior of steel 1.7147 at different temperatures

  • Brnic, Josip;Turkalj, Goran;Canadija, Marko
    • Steel and Composite Structures
    • /
    • v.17 no.5
    • /
    • pp.549-560
    • /
    • 2014
  • The paper provides the test results and analysis on the behavior of steel 1.7147 at different temperatures. Mechanical uniaxial tests were used to determine mechanical properties, resistance to creep and Charpy impact tests to determine impact energy. Test results are presented in the form of engineering stress-strain diagrams, creep curves as well as numerical data related to impact energy. The results show that the tensile strength has the highest value at room temperature, and the same goes for the yield strength as well as for modulus of elasticity. After room temperature both of mentioned properties decrease with temperature increasing. Some of creep curves were modeled using rheological models and analytical equation. Based on Charpy impact energy an assessment of fracture toughness was made.

Undrained Creep Rupture of an Anisotropically Normally Consolidated Clay (이방정규압밀점토의 비배수크리프 파양)

  • Kang, Byung-Hee;Hong, Eui
    • Geotechnical Engineering
    • /
    • v.9 no.4
    • /
    • pp.55-64
    • /
    • 1993
  • The Undrained creep tests on the normally consolidated clays with four different consolication ratios(c3c'/clc': 1.0, 0.7, 0.5, 0.4) were performed to investigate the effects of avisotropic consolidation on the undrained creep rupture behavior. The elapsed time to a certain minimum strain rate is decreased with decreasing the value of the consolidation pressure ratio, and the elapsed time to rupture for a certain minimum strain rate is also decreased with decreasing the ratio. The upper yield strength obtained from the equation suggested by Finn and Shead(1.) is coincided well with the creep strength irrespective of the magnitude of the consolidation pressure ratio, and the normallised upper yielding strength by mean confining pressure is decreased with increasing the consolidation pressure ratio. The critical strain for creep rupture, the strain at min. strain rate, is constant irrespective of the magnitude of creep stress, but it increased exponentially with increasing the ratio, It accordingly is dangerous that the potential of in-situ creep rupture is estimated only by the creep rupture test on the isotropically consolidated clay in case of K0-value below 1.0.

  • PDF

Accelerated Tensile Creep Test Method of Geosynthetics for Soil Reinforcement (보강용 지오신세틱스의 가속 인장 크리프 시험방법)

  • Koo, Hyun-Jin;Cho, Hang-Won
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.196-203
    • /
    • 2008
  • Durability of geosynthetics for soil reinforcement is accounted for creep and creep rupture, installation damage and weathering, chemical and biological degradation. Among these, the long-term creep properties have been considered as the most important factors which are directly related to the failure of geosynthetic-reinforced soil(GRS). However, the creep test methods and strain limits are too various to compare the test results with each other. The most widely used test methods are conventional creep test, time-temperature superposition and stepped isothermal method as accelerated creep tests. Recently developed design guidelines recommend that creep-rupture curve be used to determine the creep reduction factor($RF_{CR}$) which is a conservative approach. In this study, the different creep test methods were compared and the creep reduction factors were estimated at different creep strain limits of 10% of total creep strain and creep rupture. In order to minimize the impact of creep strain to the GRS structures, the various creep reduction factors using different creep test methods should be investigated and then the most appropriated one should be selected for incorporating into the design.

  • PDF