DOI QR코드

DOI QR Code

A novel dual stress/strain-controlled direct simple shear apparatus to study shear strength and shear creep of clay

  • Chen Ge (Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University) ;
  • Zhu Jungao (Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University) ;
  • Wang Tao (School of Earth Sciences and Engineering, Nanjing University) ;
  • Li Jian (Chengdu Engineering Corporation Limited) ;
  • Lou Qixun (Chengdu Engineering Corporation Limited) ;
  • Li Tao (Chengdu Engineering Corporation Limited)
  • Received : 2024.04.01
  • Accepted : 2024.06.04
  • Published : 2024.06.25

Abstract

Direct simple shear test is an effective method to measure strength and deformation properties of soil. However, existing direct simple shear apparatus have some shortcomings. The paper has developed a novel dual stress/strain-controlled direct simple shear apparatus. The novel apparatus has the following advantages: A rectangular specimen is used that effectively avoid common issues associated with conventional cylindrical specimens, such as specimen tilting. The utilization of deformation control rods ensures a uniform shear deformation of the specimen. Vertically integrated force transmission structure is improved that avoids issues arising from changes in pivot points due to lever tilting. Incorporating this novel direct simple shear apparatus, shear strength and shear creep tests of clay were performed. Shear strength parameters and shear creep behaviors are analyzed. The results of these experiments show that the novel apparatus can measure accurately the shear rheological properties of soil. This study provides strong guidance for studying the mechanical properties of soil in engineering practice.

Keywords

Acknowledgement

This work was supported by the scientific project from Huaneng company Headquarters (HNKJ20-H45), Science and Technology Major Project of Tibetan Autonomous Region of China (XZ202201ZD0003G), Key Support Project of the Yangtze River Water Science Research Joint Fund (U2040221), the Natural Science Foundation of Jiangsu Province (No. BK20230954).

References

  1. ASTM D3080-03, Standard test method for direct shear test of soils under consolidated drained conditions.
  2. Airey, D.W. (1984), "Clays in circular simple shear apparatus", Ph.D. Dissertation, University of Cambridge, London.
  3. Airey, D.W., Budhu, M. and Wood, D.M. (1985), "Some aspects of the behaviour of soils in simple shear", Develop. Soil Mech. Found. Eng., 185-213. https://doi.org/10.1016/0148-9062(86)92342-9.
  4. Airey, D.W. and Wood, D.M. (1987), "An evaluation of direct simple shear tests on clay", Geotechnique, 37(1), 25-35. https://doi.org/10.1680/geot.1987.37.1.25.
  5. Aktaa, J. and Schinke, B. (1996), "Creep lifetime under constant load and constant stress: theory and experiment", J. Test Eval., 24(4), 212-222. https://doi.org/10.1520/JTE11443J.
  6. Anderson, S.A. and Riemer, M.F. (1995), "Collapse of saturated soil due to reduction in confinement", J. Geotech. Eng., 121(2), 216-220. https://doi.org/10.1061/(ASCE)0733-9410(1995)121:2(216).
  7. Bjerrum, L. and Landva, A. (1966), "Direct simple-shear tests on a Norwegian quick clay", Geotechnique, 16(1), 1-20. https://doi.org/10.1680/geot.1966.16.1.1.
  8. Boylan, N. and Long, M. (2009), "Development of a direct simple shear apparatus for peat soils", Geotech. Test. J., 32(2), 126-138. https://doi.org/10.1520/GTJ101703.
  9. Brandes, H.G. (2011), "Simple shear behavior of calcareous and quartz sands", Geotech. Geol. Eng., 29(1), 113-126. https://doi.org/10.1007/s10706-010-9357-x
  10. Budhu, M. (1979), "Simple shear deformation of sands", Ph.D. Dissertation, University of Cambridge, London.
  11. Budhu, M. (1984), "Nonuniformities imposed by simple shear apparatus", Can. Geotech. J., 21, 125-137. https://doi.org/10.1016/0148-9062(84)90401-7.
  12. Budhu, M. and Britto, A.M. (1987), "Numerical analysis of soils in simple shear devices", Soils Found., 27(2), 33-46. https://doi.org/10.1016/0148-9062(88)91925-0.
  13. Budhu, M. (1988), "Failure state of a sand in simple shear", Can. Geotech. J., 25(2), 395-400. https://doi.org/10.1139/t88-041.
  14. Cappellaro, C., Cubrinovski, M., Bray, J.D., Chiaro, G., Riemer, M.F. and Stringer, M.E. (2021), "Liquefaction resistance of Christchurch sandy soils from direct simple shear tests", Soil Dyn. Earthq. Eng., 141, 106489. https://doi.org/10.1016/j.soildyn.2020.106489.
  15. Chu, J., Leong, W.K., Loke, W.L. and Wanatowski, D. (2012), "Instability of loose sand under drained conditions", J. Geotech. Geoenviron. Eng., 138(2), 207-216. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000574.
  16. Dang, W., Konietzky, H., Herbst, M. and Thomas, F. (2017), "Complex analysis of shear box tests with explicit consideration of interaction between test device and sample", Measurement, 102, 1-9. https://doi.org/10.1016/j.measurement.2017.01.040.
  17. Dang, W., Chen, J., Huang, L., Ma, J. and Li, X. (2021), "Frictional behavior of granular materials exposed to dynamic normal load", Eng. Geol., 295, 0013-7952. https://doi.org/10.1016/j.enggeo.2021.106414.
  18. DeGroot, D.J., Ladd, C.C. and Germaine, J.T. (1996), "Undrained multidirectional direct simple shear behavior of cohesive soil", J. Geotech. Eng., 122(2), 91-98. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:2(91)
  19. Doroudian, M. and Vucetic, M. (1995), "A direct simple shear device for measuring small-strain behavior", Geotech. Test. J., 18(1), 69-85. https://doi.org/10.1520/GTJ10123J.
  20. Hubler, J.F., Athanasopoulos-Zekkos, A. and Zekkos, D. (2017), "Monotonic, cyclic, and postcyclic simple shear response of three uniform gravels in constant volume conditions", J. Geotech. Geoenviron. Eng., 143(9), 04017043. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001723.
  21. Jin, H., Guo, L., Sun, H., Shi, L. and Cai, Y. (2022), "Undrained cyclic shear strength and stiffness degradation of overconsolidated soft marine clay in simple shear tests", Ocean Eng., 262, 112270. https://doi.org/10.1016/j.oceaneng.2022.112270.
  22. Jurko, J., Sassa, K. and Fukuoka, H. (2008), "Study on seismic behavior of nonplastic silt by means of ring-shear apparatus". Landslides, 5, 189-201. https://doi.org/10.1007/s10346-008-0113-8
  23. Karunawardena, A., Oka, F. and Kimoto, S. (2011), "Elastoviscoplastic modeling of the consolidation of Sri Lankan peaty clay", Geomech. Eng., 3(3), 233-254. http://dx.doi.org/10.12989/gae.2011.3.3.233.
  24. Khayat, N., Ghalandarzadeh, A. and Jafari, M.K. (2014), "Grain shape effect on the anisotropic behavior of silt-sand mixtures", Geotech. Eng., 167(3): 281-296. http://dx.doi.org/10.1680/geng.11.00093.
  25. Khayat, N. (2018), "Monotonic behaviour of sand under torsional loading with different confine stress", Int. J. Geomate, 14(43), 148-153. https://doi.org/10.21660/2018.43.7359.
  26. Kjellman, W. (1951), "Testing the shear strength of clay in Sweden", Geotechnique, 2(3), 225-232. https://doi.org/10.1680/geot.1951.2.3.225.
  27. Kwan, S.W. (2018), "A review on sand specimen reconstitution methods and procedures for undrained simple shear test", Int. J. Geotech. Eng., 1-9. https://doi.org/10.1080/19386362.2018.1461988.
  28. Lashkari, A., Falsafizadeh, S.R., Shourijeh, P.T. and Alipour, M.J. (2020), "Instability of loose sand in constant volume direct simple shear tests in relation to particle shape", Acta Geotechnica, 15(9), 2507-2527. https://doi.org/10.1007/s11440-019-00909-4.
  29. Lashkari, A., Falsafizadeh, S.R. and Rahman, M.M. (2021), "Influence of linear coupling between volumetric and shear strains on instability and post-peak softening of sand in direct simple shear tests", Acta Geotechnica, 16(11), 3467-3488. https://doi.org/10.1007/s11440-021-01288-5.
  30. Li, Y., Yang, Y., Yu, H.S. and Roberts, G. (2017), "Monotonic direct simple shear tests on sand under multidirectional loading", Int. J. Geomech., 17(1), 04016038. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000673.
  31. Mayne, P.W. (1985), "A review of undrained strength in direct simple shear", Soils Found., 25(3), 64-72. https://doi.org/10.3208/sandf1972.25.3_64.
  32. Medicus, G., Kwa, K.A. and Cerfontaine, B. (2022), "A consistent calibration process for the Matsuoka-Nakai friction angle under direct simple shear conditions for clay hypoplasticity", Comput. Geotech., 150, 104888. https://doi.org/10.1016/j.compgeo.2022.104888.
  33. Muhammad, N.N., Seung, H.L., Song, H.C. and Jae, H.K. (2023), "Modification of direct shear apparatus for soil-soil and soil-solid interface testing", Geomech. Eng., 35(3), 325-332. https://doi.org/10.12989/gae.2023.35.3.325.
  34. Monkul, M.M., Gultekin, C., Gulver, M., Akin, O. and Eseller-Bayat, E. (2015), "Estimation of liquefaction potential from dry and saturated sandy soils under drained constant volume cyclic simple shear loading", Soil Dyn. Earthq. Eng., 75, 27-36. https://doi.org/10.1016/j.soildyn.2015.03.019.
  35. Mortezaie, A. and Vucetic, M. (2012), "Small-strain cyclic testing with standard NGI simple shear device", Geotech. Test. J., 35(6), 935-948. https://doi:10.1520/GTJ20120007.
  36. Mortezaie, A.R. and Vucetic, M. (2013), "Effect of frequency and vertical stress on cyclic degradation and pore water pressure in clay in the NGI simple shear device", J. Geotech. Geoenviron. Eng., 139(10), 1727-1737. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000922.
  37. Nong, Z.Z., Park, S.S. and Lee, D.E. (2021), "Comparison of sand liquefaction in cyclic triaxial and simple shear tests", Soils Found., 61(4), 1071-1085. https://doi.org/10.1016/j.sandf.2021.05.002.
  38. Rasool, A.M. and Aziz, M. (2019), "Shear infiltration and constant water content tests on unsaturated soils", Geomech. Eng., 19(5), 435-445. https://doi.org/10.12989/gae.2019.19.3.269.
  39. Reid, D. and Fourie, A. (2019), "A direct simple shear device to study static liquefaction triggering under constant shear drained loading", Geotechnique Lett., 9(2), 1-18. https://doi.org/10.1680/jgele.19.00011.
  40. Reardon, R., Humire, F., Ahmed, S.S., Ziotopoulou, K., Martinez, A. and DeJong, J.T. (2022), "Effect of gradation on the strength and stress-dilatancy of coarse-grained soils: a comparison of monotonic direct simple shear and triaxial tests", Proceedings of the Geo-Congress, 226-236. https://doi.org/10.1061/9780784484678.031.
  41. Roscoe, K.H. (1953), "An apparatus for the application of simple shear to soil samples", Proceedings of the 3rd International Conference on Soil Mechanics and Foundation Engineering, Zurich.
  42. Tao, K., Dang, W. and Li, Y. (2023), "Frictional sliding of infilled planar granite fracture under oscillating normal stress", Int. J. Min. Sci. Tech., 33(6), 687-701. https://doi.org/10.1016/j.ijmst.2022.12.001.
  43. Vieira, C.S., Lopes, M.D. and Caldeira, L. (2015), "Sand-nonwoven geotextile interfaces shear strength by direct shear and simple shear tests", Geomech. Eng., 9(5), 601-618. https://doi.org/10.12989/gae.2015.9.5.601.
  44. Vucetic, M. and Lacasse, S. (1982), "Specimen size effect in simple shear test", J. Geotech. Eng. Division, 108(12), 1567-1585. https://doi.org/10.1061/AJGEB6.0001395.
  45. Vucetic, M., Lanzo, G. and Doroudian, M. (1998), "Effect of the shape of cyclic loading on damping ratio at small strains", Soils Found., 38(1), 111-120. https://doi.org/10.3208/sandf.38.111.
  46. Wai, D., Manmatharajan, M.V. and Ghafghazi, M. (2022), "Effects of imperfect simple shear test boundary conditions on monotonic and cyclic measurements in sand", J. Geotech. Geoenviron. Eng., 148(1), 04021164. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002682.
  47. Wahyudi, S., Koseki, J., Sato, T. and Chiaro, G. (2016), "Multiple-liquefaction behavior of sand in cyclic simple stacked-ring shear tests", Int. J. Geomech., 16(5), C4015001. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000596.
  48. Wang, C.Y., Mao, N.H. and Wu, F. (1979), "The mechanical property of montmorillonite clay at high pressure and implications on fault behavior", Geophys. Res. Lett., 6(6), 476-478. https://doi.org/10.1016/0148-9062(80)91123-7.
  49. Wang, C.Y. and Mao, N.H. (1979), "Shearing of saturated clays in rock joints at high confining pressures", Geophys. Res. Lett., 6(11), 825-828. https://doi.org/10.1029/gl006i011p00825.
  50. Wang, T., Liu, S.H. and Lu, Y. (2019), "Laboratory experiments on the improvement of rockfill materials with composite grout", Geomech. Eng., 17(3), 309-318. https://doi.org/10.12989/gae.2019.17.3.307.
  51. Wang, T., Liu, S.H., Wautier, A. and Nicot, F. (2022), "Updated skeleton void ratio for gravelly sand mixtures considering the effect of grain size distribution", Can. Geotech. J., 59(1), 12-23. https://doi.org/10.1139/cgj-2020-0570
  52. Xu, D.S., Liu, H.B., Rui, R. and Gao, Y. (2019), "Cyclic and postcyclic simple shear behavior of binary sand-gravel mixtures with various gravel contents", Soil Dyn. Earthq. Eng., 123, 230-241. https://doi.org/10.1016/j.soildyn.2019.04.030.
  53. Yazdani Bejarbaneh, B., Jahed Armaghani, D. and Mohd Amin, M.F. (2015), "Strength characterisation of shale using mohr-coulomb and hoek-brown criteria", Measurement, 63(63), 269-281. https://doi.org/10.1016/j.measurement.2014.12.029.
  54. Zhang, M., Yang, Y., Zhang, H. and Yu, H.S. (2019), "DEM and experimental study of bi-directional simple shear", Granular Matter, 21, 1-13. https://doi.org/10.1007/s10035-019-0870-1.
  55. Zhang, C., Ji, J., Gui, Y., Kodikara, J., Yang, S.Q. and He, L. (2016), "Evaluation of soil-concrete interface shear strength based on LS-SVM", Geomech. Eng., 11(3), 361-372. https://doi.org/10.12989/gae.2016.11.3.361.