• Title/Summary/Keyword: creep strength

Search Result 431, Processing Time 0.028 seconds

Tensile and impact toughness properties of various regions of dissimilar joints of nuclear grade steels

  • Karthick, K.;Malarvizhi, S.;Balasubramanian, V.;Krishnan, S.A.;Sasikala, G.;Albert, Shaju K.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.1
    • /
    • pp.116-125
    • /
    • 2018
  • Modified 9Cr-1Mo ferritic steel is a preferred material for steam generators in nuclear power plants for their creep strength and good corrosion resistance. Austenitic stainless steels, such as type 316LN, are used in the high temperature segments such as reactor pressure vessels and primary piping systems. So, the dissimilar joints between these materials are inevitable. In this investigation, dissimilar joints were fabricated by the Shielded Metal Arc Welding (SMAW) process with Inconel 82/182 filler metals. The notch tensile properties and Charpy V-notch impact toughness properties of various regions of dissimilar metal weld joints (DMWJs) were evaluated as per the standards. The microhardness distribution across the DMWJs was recorded. Microstructural features of different regions were characterized by optical and scanning electron microscopy. Inhomogeneous notch tensile properties were observed across the DMWJs. Impact toughness values of various regions of the DMWJs were slightly higher than the prescribed value. Formation of a carbon-enriched hard zone at the interface between the ferritic steel and the buttering material enhanced the notch tensile properties of the heat-affected-zone (HAZ) of P91. The complex microstructure developed at the interfaces of the DMWJs was the reason for inhomogeneous mechanical properties.

Performance-based structural fire design of steel frames using conventional computer software

  • Chan, Y.K.;Iu, C.K.;Chan, S.L.;Albermani, F.G.
    • Steel and Composite Structures
    • /
    • v.10 no.3
    • /
    • pp.207-222
    • /
    • 2010
  • Fire incident in buildings is common, so the fire safety design of the framed structure is imperative, especially for the unprotected or partly protected bare steel frames. However, software for structural fire analysis is not widely available. As a result, the performance-based structural fire design is urged on the basis of using user-friendly and conventional nonlinear computer analysis programs so that engineers do not need to acquire new structural analysis software for structural fire analysis and design. The tool is desired to have the capacity of simulating the different fire scenarios and associated detrimental effects efficiently, which includes second-order P-D and P-d effects and material yielding. Also the nonlinear behaviour of large-scale structure becomes complicated when under fire, and thus its simulation relies on an efficient and effective numerical analysis to cope with intricate nonlinear effects due to fire. To this end, the present fire study utilizes a second-order elastic/plastic analysis software NIDA to predict structural behaviour of bare steel framed structures at elevated temperatures. This fire study considers thermal expansion and material degradation due to heating. Degradation of material strength with increasing temperature is included by a set of temperature-stress-strain curves according to BS5950 Part 8 mainly, which implicitly allows for creep deformation. This finite element stiffness formulation of beam-column elements is derived from the fifth-order PEP element which facilitates the computer modeling by one member per element. The Newton-Raphson method is used in the nonlinear solution procedure in order to trace the nonlinear equilibrium path at specified elevated temperatures. Several numerical and experimental verifications of framed structures are presented and compared against solutions in literature. The proposed method permits engineers to adopt the performance-based structural fire analysis and design using typical second-order nonlinear structural analysis software.

Design and Construction of the Burj Dubai Concrete Building Project (버즈 두바이 콘크리트 건물의 설계와 시공)

  • Abdelrazaq, Ahmad
    • Magazine of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.28-35
    • /
    • 2008
  • The Burj Dubai Project will be the tallest structure ever built by man; when completed the tower will be more than 700 meter tall and more than 160 floors. While the early integration of aerodynamic shaping and wind engineering considerations played a major role in the architectural massing and design of this multi-use/residential tower, where mitigating and taming the dynamic wind effects was one of the most important design criteria, the material selection for the structural systems of the tower was also a major consideration and required detailed evaluation of the material technologies and skilled labor available in the market at the time Concrete was selected for its strength, stiffness, damping, redundancy, moldability, free fireproofing, speed of construction, and cost effectiveness. In addition, the design challenges of using concrete for the design of the structural system components will be addressed. The focus on this paper will also be on the early planning of the concrete works of the Burj Dubai Project.

Degradation Degree Evaluation of Heat Resisting Steel by Electrochemical Technique (Part I : Mechanism and Its Possibility of Field Application) (電氣化學的 方法에 의한 耐熱鋼의 劣化度 測定 제1보)

  • 정희돈;권녕각
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.3
    • /
    • pp.598-607
    • /
    • 1992
  • The environment degradation of structural steel under high temperature is one of the key phenomena governing the availability and life of plant. This degradation resulted from the microstructural changes due to the long exposure at high temperature affect the mechanical properties such as creep strength and toughness. For instance, boiler tube materials usually tend to degrade, after long term operation, by precipitates, spherodizing, coarsening, and change in chemical composition of carbides. In this study, the material degradation under high temperature exposure was investigated by evaluating the carbide precipitation. The electrochemical polarization method was facilitated to investigate the precipitation and coarsening of carbides. It was shown by the modified electrochemical potentiokinetic reactivation (EPR) tests that the passivation of Mo-rich carbides did not occur even in the anodic peak current (Ip) which indicates the precipitation of Mo$_{6}$C was also observed. And it was assured that special electrolytic cell assembled in this research can be used for the detection of Mo$_{6}$C precipitation in the field.eld.

HIGH BURNUP FUEL TECHNOLOGY IN KOREA

  • Song, Kun-Woo;Jeong, Yong-Hwan;Kim, Keon-Sik;Bang, Je-Geon;Chun, Tae-Hyun;Kim, Hyung-Kyu;Song, Kee-Nam
    • Nuclear Engineering and Technology
    • /
    • v.40 no.1
    • /
    • pp.21-36
    • /
    • 2008
  • High bum-up fuel technology has been developed through a national R&D program, which covers key technology areas such as claddings, $UO_2$ pellets, spacer grids, performance code, and fuel assembly tests. New cladding alloys were developed through alloy designs, tube fabrication, out-of-pile test and in-reactor test. The new Zr-Nb tubes are found to be much better in their corrosion resistance and creep strength than the Zircaloy-4 tube, owing to an optimized composition and heat treatment of the new Zr-Nb alloys. A new fabrication technology for large grain $UO_2$ pellets was developed using various uranium oxide seeds and a micro-doping of Al. The uranium oxide seeds, which were added to $UO_2$ powder, were prepared by oxidizing and heat-treating scrap $UO_2$ pellets. A $UO_2$ pellet containing tungsten channels was fabricated for a thermal conductivity enhancement. For the fuel performance analysis, new high burnup models were developed and implemented in a code. This code was verified by an international database and our own database. The developed spacer grid has two features of contoured contact spring and hybrid mixing vanes. Mechanical and hydraulic tests showed that the spacer grid is superior in its rodsupporting, wear resistance and CHF performance. Finally, fuel assembly test technology was also developed. Facilities for mechanical and thermal hydraulic tests were constructed and are now in operation. Several achievements are to be utilized soon by the Korea Nuclear Fuel and thereby contribute to the economy and safety of PWR fuel in Korea

Analysis of Thermal Oxide Behavior with Isothermal Degradation of TBC Systems Applied to Single Crystal Superalloy (단결정 초내열합금에 적용된 열차폐코팅의 등온열화에 따른 산화물 거동분석)

  • Kim, K.;Wee, S.;Choi, J.;Kim, D.;Song, H.;Lee, J.;Seok, C.S.;Chung, E.S.;Kwon, S.H.
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.4
    • /
    • pp.1-5
    • /
    • 2019
  • In the field of combined cycle power generation, thermal barrier coating(TBC) protects the super-heat-resistant alloy, which forms the core component of the gas turbine, from high temperature exposure. As the turbine inlet temperature(TIT) increases, TBC is more important and durability performance is also important when considering maintenance cost and safety. Therefore, studies have been made on the fabrication method of TBC and super-heat-resistant alloy in order to improve the performance of the TBC. In recent years, due to excellent properties such as high temperature creep resistance and high temperature strength, turbine blade material have been replaced by a single crystal superalloy, however there is a lack of research on TBC applied to single crystal superalloy. In this study, to understand the isothermal degradation performance of the TBC applied to the single crystal superalloy, isothermal exposure test was conducted at various temperature to derive the delamination life. The growth curve of thermally grown oxide(TGO) layer was predicted to evaluate the isothermal degradation performance. Also, microstructural analysis was performed by scanning electron microscope(SEM) and energy dispersive X-ray spectroscopy (EDS) to determine the effect of mixed oxide formation on the delamination life.

Experimental and numerical study on shear studs connecting steel girder and precast concrete deck

  • Xia, Ye;Chen, Limu;Ma, Haiying;Su, Dan
    • Structural Engineering and Mechanics
    • /
    • v.71 no.4
    • /
    • pp.433-444
    • /
    • 2019
  • Shear studs are often used to connect steel girders and concrete deck to form a composite bridge system. The application of precast concrete deck to steel-concrete composite bridges can improve the strength of decks and reduce the shrinkage and creep effect on the long-term behavior of structures. How to ensure the connection between steel girders and concrete deck directly influences the composite behavior between steel girder and precast concrete deck as well as the behavior of the structure system. Compared with traditional multi-I girder systems, a twin-I girder composite bridge system is more simplified but may lead to additional requirements on the shear studs connecting steel girders and decks due to the larger girder spacing. Up to date, only very limited quantity of researches has been conducted regarding the behavior of shear studs on twin-I girder bridge systems. One convenient way for steel composite bridge system is to cast concrete deck in place with shear studs uniformly-distributed along the span direction. For steel composite bridge system using precast concrete deck, voids are included in the precast concrete deck segments, and they are casted with cast-in-place concrete after the concrete segments are erected. In this paper, several sets of push-out tests are conducted, which are used to investigate the heavier of shear studs within the voids in the precast concrete deck. The test data are analyzed and compared with those from finite element models. A simplified shear stud model is proposed using a beam element instead of solid elements. It is used in the finite element model analyses of the twin-I girder composite bridge system to relieve the computational efforts of the shear studs. Additionally, a parametric study is developed to find the effects of void size, void spacing, and shear stud diameter and spacing. Finally, the recommendations are given for the design of precast deck using void for twin I-girder bridge systems.

Microstructural and Mechanical Properties of Ta-bearing 9%Cr Ferritic/Martensitic Steels (탄탈륨 함유 9%Cr 페라이트/마르텐사이트 강의 미세조직 및 기계적 특성)

  • Baek, Jong-Hyuk;Han, Chang-Hee;Kim, Sung-Ho;Lee, Chan-Bock;Hahn, Dohee
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.4
    • /
    • pp.209-216
    • /
    • 2009
  • It was evaluated that the microstructural and mechanical properties of Ta-bearing 9Cr-0.5Mo-2W ferritic/martensitic experimental steels. All the experimental steels showed the tempered martensitic microstructures, and $M_{23}C_6$ carbides, whose sizes were ranged from 200 to 300 nm, were easily observed at both boundaries of the prior austenite grain and the martensite lath. In addition, a relatively large Nb-rich MX carbonitrides were intermittently detected at the prior austenite grain boundaries, whereas a lot of Vrich MX carbonitrides, whose mean diameter was less than 50 nm, were observed randomly at both boundaries. Ta was mainly incorporated into the V-rich MX carbonitrides rather than the Nb-rich ones and their content was spanned from 5 to 20 at.%. Ta contents within the MX precipitates also increased as the content of Ta increased. Because the Ta addition into the steels would be attributed to the precipitation strengthening, solid solution strengthening and lath width reduction, it was shown that the mechanical properties, including hardness, tensile strength and creep rate of the 9%Cr-0.5Mo-2W steels were improved by the increase of Ta content. Especially, 9Cr-0.5Mo-2W-0.3V-0.05Nb-0.14Ta steel was revealed to be relatively excellent in the application for the SFR fuel cladding.

Coupled irradiation-thermal-mechanical analysis of the solid-state core in a heat pipe cooled reactor

  • Ma, Yugao;Liu, Jiusong;Yu, Hongxing;Tian, Changqing;Huang, Shanfang;Deng, Jian;Chai, Xiaoming;Liu, Yu;He, Xiaoqiang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2094-2106
    • /
    • 2022
  • The solid-state core of a heat pipe cooled reactor operates at high temperatures over 1000 K with thermal and irradiation-induced expansion during burnup. The expansion changes the gap thickness between the solid components and the material properties, and may even cause the gap closure, which then significantly influences the thermal and mechanical characteristics of the reactor core. This study developed an irradiation behavior model for HPRTRAN, a heat pipe reactor system analysis code, to introduce the irradiation effects such as swelling and creep. The megawatt heat pipe reactor MegaPower was chosen as an application case. The coupled irradiation-thermal-mechanical model was developed to simulate the irradiation effects on the heat transfer and stresses of the whole reactor core. The results show that the irradiation deformation effect is significant, with the irradiation-induced strains up to 2.82% for fuel and 0.30% for monolith at the end of the reactor lifetime. The peak temperatures during the lifetime are 1027:3 K for the fuel and 956:2 K for monolith. The gap closure enhances the heat transfer but caused high stresses exceeding the yield strength in the monolith.

Change of Ice Resistance of Ice-Breaking Tanker According to Frictional Coefficient (빙마찰계수에 따른 쇄빙탱커의 빙저항 변화)

  • Cho, Seong-Rak;Lee, Sungsu;Lee, Yong-Chul;Yum, Jong-Gil;Jang, Jinho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.3
    • /
    • pp.175-181
    • /
    • 2021
  • This study describes the model tests in ice according to the frictional coefficient of an ice-breaking ship and the change in ice resistance by the analysis method for each component of ice resistances. The target vessel is a 90K DWT ice-breaking tanker capable of operating in ARC7 ice conditions in the Arctic Ocean, and twin POD propellers are fitted. The hull was specially painted with four different frictional coefficients on the same ship model. The total ice resistance can be separated by ice breaking, ice buoyancy, ice clearing resistances through the tests in level ice, pre-sawn ice and creep test in pre-sawn ice under sea ice thickness of 1.2 m and 1.7 m. Ice resistance was analyzed by correcting the thickness and bending strength of model ice by the ITTC correction method. As the frictional coefficient between the hull and ice increases, ice buoyancy and clearing resistances increase significantly. When the surface of the hull is rough, it is considered that the broken ice pieces do not slip easily to the side, resulting in an increase in ice buoyancy resistance. Also, the frictional coefficient was found to have a great influence on the ice clearing resistance as the ice thickness became thicker.