• Title/Summary/Keyword: creep strength

Search Result 429, Processing Time 0.028 seconds

Creep characteristics and instability analysis of concrete specimens with horizontal holes

  • Xin, Yajun;Hao, Haichun;Lv, Xin;Ji, Hongying
    • Computers and Concrete
    • /
    • v.22 no.6
    • /
    • pp.563-572
    • /
    • 2018
  • Uniaxial compressive strength test and uniaxial compression creep one were produced on four groups of twelve concrete specimens with different hole number by RLW-2000 rock triaxial rheology test system. The relationships between horizontal holes and instantaneous failure stress, the strain, and creep failure stress, the strain, and the relationships between stress level and instantaneous strain, creep strain were studied, and the relationship between horizontal holes and failure mode was determined. The results showed that: with horizontal hole number increasing, compressive strength of the specimens decreased whereas its peak strain increased, while both creep failure strength and its peak strain decreased. The relationships between horizontal holes and compressive strength of the specimens, the peak strain, were represented in quadratic polynomial, the relationships between horizontal holes and creep failure strength, the peak strain were represented in both linear and quadratic polynomial, respectively. Instantaneous strain decreased with stress level increasing, and the more holes in the blocks the less the damping of instantaneous strain were recorded. In the failure stress level, instantaneous strain reversally increased, creep strain showed three stages: decreasing, increasing, and sharp increasing; in same stress level, the less holes the less creep strain rate was recorded. The compressive-shear failure was produced along specimen diagonal line where the master surface of creep failure occurred, the more holes in a block, the higher chances of specimen failure and the more obvious master surface were.

Effect of the grain size of temperature dependence on the creep behavior of SUS 316 (SUS 316 강의 온도의존성 결정입경이 크리이프 거동에 미치는 영향)

  • Oh, Sae-Wook;Kang, Oug
    • Journal of Welding and Joining
    • /
    • v.1 no.2
    • /
    • pp.61-68
    • /
    • 1983
  • Austenitic stainless steel has been investigated widely for creep strength of heat resistant material and effects of grain sizes due to various solution treatment time under constant temperature. It was studied that effects of grain sizes subject to solution treatment temperature 1100.deg. C, 1125.deg. C, 1175.deg. C, 1250.deg C, and 1300.deg. C respectively on the creep strength, fracture behaviour and fractography of SUS 316 stainless steel. The experimental results obtained were as follows. 1. The optimum grain size for the maximum creep strength did not vary with creep testing temperatures and stress levels. 2. Among various grain sizes due to different solution treatment temperature, the optimum grain size for the creep strength was found 0.044mm. Also the size showed the minimum initial strain regardless creep temperature. 3. Garofalo's equation of creep rupture life was applied well to SUS 316 stainless steel. 4. The fractography of optimum size was ductile intergranular fracture of dimple type and showed along with the increase of grain size intergranular fracture of w type.

  • PDF

Weibull Statistical Analysis of Elevated Temperature Tensile Strength and Creep Rupture Time in Stainless Steels (스테인리스 강의 고온 인장강도와 크리프 파단시간의 와이블 통계 해석)

  • Jung, W.T.;Kim, Y.S.;Kim, S.J.
    • Journal of Power System Engineering
    • /
    • v.14 no.4
    • /
    • pp.56-62
    • /
    • 2010
  • This paper is concerned with the stochastic nature of elevated temperature tensile strength and creep rupture time in 18Cr-8Ni stainless steels. The Weibull statistical analysis using the NRIM data sheet has been performed to investigate the effects of variability of the elevated temperature tensile strength and creep rupture time on the testing temperature. From those investigations, the distributions of temperature tensile strength and creep rupture time were well followed in 2-parameter Weibull. The shape parameter and scale parameter for the Weibull distribution of tensile strength were decreased with increasing the testing temperature. For the creep rupture time, generally, the shape parameter were decreased with increasing the testing temperature.

The Creep Behavior of Austentic SUS 27 by Moire Method (모아레法 을 活용 比較한 오우스테나이트系 SUS 27 의 크리이프擧動)

  • 옹장우;이훈주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.1
    • /
    • pp.46-51
    • /
    • 1983
  • This study practiced to observe the creep behavior at specific temperature on Austentic SUB 27 stainless steel by Moire method. The results obtained from this study are summarized as follows; In tensile experiment, tensile strength and yielding strength decrease as the temperature increases. Yielding strength is equivalent to 60-70% of tensile strength. Reduction of Area and Elongation show minimum values at 300.deg. C. The results of Moire method using Moire heating resisting grid coincide with LVDT result. Therefor, It is proved that the Moire method has great merit in strain measurement of a creep behavior. In homologous at temp. 0.2 or less, creep behavior is very small amount. But, in more than 0.3, creep behavior is very active. Creep rate increase as temperature increase and creep rate is proportional to .alpha. values of experimental equation.

Modelling creep of high strength concrete

  • Dias-da-Costa, D.;Julio, E.N.B.S.
    • Computers and Concrete
    • /
    • v.7 no.6
    • /
    • pp.533-547
    • /
    • 2010
  • Recent developments in concrete mixing made possible the production of concretes with high compressive strength showing, simultaneously, high workability. These concretes also present high strengths at young ages, allowing the application of loads sooner. It is of fundamental importance to verify if creep models developed for current concrete still apply to these new concretes. First, a FEM-based software was adopted to test available creep models, most used for normal strength concrete, considering examples with known analytical results. Several limitations were registered, resulting in an incorrect simulation of three-dimensional creep. Afterwards, it was implemented a Kelvin-chain algorithm allowing the use of a chosen number of elements, which adequately simulated the adopted examples. From the comparison between numerical and experimental results, it was concluded that the adopted algorithm can be used to model creep of high strength concrete, if the material properties are previously experimentally assessed.

Evaluation of the Creep Properties of High Strength Concrete according to Moisture Evaporation and Compressive Strength (수분증발조건 및 압축강도에 따른 고강도콘크리트의 크리프 특성 평가)

  • Bae, Chang-O;Kim, Gyu-Yong;Ham, Eun-Young;Koo, Kyung-Mo;Kim, Hong-Seop;Yoon, Min-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.75-76
    • /
    • 2012
  • In this study, it was evaluated about creep properties of high strength concrete according to compressive strength and moisture evaporation condition. As a results, creep strain and creep coefficient was greatly affected by moisture evaporation conditions rather than compressive strength. Also, the effect of fiber mixed was not show big difference.

  • PDF

Experimental investigation of long-term characteristics of greenschist

  • Zhang, Qing-Zhao;Shen, Ming-Rong;Ding, Wen-Qi;Jang, Hyun-Sic;Jang, Bo-An
    • Geomechanics and Engineering
    • /
    • v.11 no.4
    • /
    • pp.531-552
    • /
    • 2016
  • The greenschist in the Jinping II Hydropower Station in southwest China exhibits continuous creep behaviour because of the geological conditions in the region. This phenomenon illustrates the time-dependent deformation and progressive damage that occurs after excavation. In this study, the responses of greenschist to stress over time were determined in a series of laboratory tests on samples collected from the access tunnel walls at the construction site. The results showed that the greenschist presented time-dependent behaviour under long-term loading. The samples generally experienced two stages: transient creep and steady creep, but no accelerating creep. The periods of transient creep and steady creep increased with increasing stress levels. The long-term strength of the greenschist was identified based on the variation of creep strain and creep rate. The ratio of long-term strength to conventional strength was around 80% and did not vary much with confining pressures. A quantitative method for predicting the failure period of greenschist, based on analysis of the stress-strain curve, is presented and implemented. At a confining pressure of 40 MPa, greenschist was predicted to fail in 5000 days under a stress of 290 MPa and to fail in 85 days under the stress of 320 MPa, indicating that the long-term strength identified by the creep rate and creep strain is a reliable estimate.

Assessments of the Combined Effect of Installation Damage and Creep on the Long-Term Design Strength of Geogrid for Railroad Reinforcement (철도노반 보강용 지오그리드의 크리프 및 손상이 장기 인장강도에 미치는 영향평가)

  • Lee Do-Hee;Park Tae-Soon;Cho Sam-Deok;Lee Kwang-Wu
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1156-1161
    • /
    • 2004
  • The factors affecting the long-term design strength of geogrid for railroad reinforcement can be classified into factors on creep deformation, installation damage, temperature, chemical degradation, biological degradation. Especially, creep deformation and installation damage are considered as main factors to determine the long-term design strength of geogrid. This paper describes the results of a series of experimental study, which are carried out to assess the combined effect of installation damage and creep deformation for the long-term design strength of geogrid reinforcement. In this study, a series of field tests are carried out to assess installation damage of a various geogrids according to different fill materials, and then creep tests are conducted to assess the creep properties of both undamaged and damaged geogrids.

  • PDF

Investigation on Factors Influencing Creep Prediction and Proposal of Creep Prediction Model Considering Concrete Mixture in the Domestic Construction Field (크리프 예측 영향요인 검토 및 국내 건설현장 콘크리트 배합을 고려한 크리프 예측 모델식 제안)

  • Moon, Hyung-Jae;Seok, Won-Kyun;Koo, Kyung-Mo;Lee, Sang-Kyu;Hwang, Eui-Chul;Kim, Gyu-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.6
    • /
    • pp.503-510
    • /
    • 2019
  • Recently, construction technology of RC structures must be examined for creep in concrete. The factors affecting the creep prediction of concrete and the results of creep in domestic construction field were reviewed. The longer the creep test period and the higher the compressive strength, the higher the creep prediction accuracy. The higher the curing temperature, the higher the initial strength development of the concrete, but the difference in the creep coefficients increased over time. Based on the results of creep evaluation in the domestic construction field and lab. tests, a modified predictive model that complements the ACI-209 model was proposed. In the creep prediction of real members using general to high strength concrete, the test period and temperature should be considered precisely.

An Experimental Study on the Combined Effect of Installation Damage and Creep of Geogrids (지오그리드의 시공시 손상 및 크리프 복합효과에 대한 실험적 연구)

  • Cho, Sam-Deok;Lee, Kwang-Wu;Oh, Se-Yong;Lee, Do-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.561-568
    • /
    • 2005
  • The factors affecting the long-term design strength of geogrid can be classified into factors on creep deformation, installation damage, temperature, chemical degradation and biological degradation. Especially, creep deformation and installation damage are considered as main factors to determine the long-term design strength of geogrid. Current practice in the design of reinforced soil is to calculate the long-term design strength of a reinforcement damaged during installation by multiplying the two partial safety factors, $RF_{ID} and RF_{CR}$. This method assumes that there is no synergy effect between installation damage and creep deformation of geogrids. Therefore, this paper describes the results of a series of experimental study, which are carried out to assess the combined effect of installation damage and creep deformation for the long-term design strength of geogrid reinforcement. The results of this study show that the tensile strength reduction factors, RF, considering combined effect between installation damage and creep deformation is less than that calculated by the current design method.

  • PDF