• Title/Summary/Keyword: creep of concrete

Search Result 451, Processing Time 0.029 seconds

Ultimate Analysis of Prestressed Concrete Cable-Stayed Bridges (프리스트레스트 콘크리트 사장교의 극한해석)

  • Lee, Jae Seok;Kang, Young Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.5
    • /
    • pp.85-98
    • /
    • 1993
  • A method of analysis for the material and geometric nonlinear analysis of planar prestressed concrete cable-stayed bridges including the time-dependent effects due to load history, creep, shrinkage, aging of concrete and relaxation of prestress is described. The analysis procedure, based on the finite element method, is capable of predicting the response of these structures through elastic, cracking, inelastic and ultimate ranges. The nonlinear formulation for the description of motion is based on the updated Lagrangian approach. To account for the material nonlinearity, nonlinear stress-strain relationship and cracking of concrete, nonlinear stress-strain relationships of reinforcing steel, prestressing steel, and cable, including load reversal are given. Results from a numerical examples on ultimate analyses of cable-stayed bridges are presented to illustrate the analysis method.

  • PDF

Behavior of Composite Steel Bridges According to the Concrete Slab Casting Sequences (바닥판 콘크리트 타설순서에 따른 합성형교량의 거동해석)

  • Kwak, Hyo Gyoung;Seo, Young Jae;Jung, Chan Mook;Park, Young Ha
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.2 s.35
    • /
    • pp.233-251
    • /
    • 1998
  • This paper deals with the prediction of behavior of composite girder bridges according to the placing sequences of concrete deck. Based on a degenerate kernel of compliance function in the form of Dirichlet series, the time-dependent behaviors of bridges are simulated, and the layer approach is adopted to determine the equilibrium condition in a section. The variation of bending moments along the bridge length caused by the slab casting sequence is reviewed and correlation studies between section types and placing sequences are conducted with the objective to establish the validity of the continuous placing of concrete deck on the closed steel box-girder which is broadly used in practice.

  • PDF

Nonlinear Analysis of Segmentally Erected Prestressed Concrete Cable-Stayed Bridges (시공단계를 고려한 프리스트레스트 콘크리트 사장교의 비선형 해석)

  • Lee, Jae Seok;Kang, Young Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.49-62
    • /
    • 1994
  • An analysis method for the time-dependent nonlinear analysis of segmentally erected planar prestressed concrete cable-stayed bridges was described. To account for the time-dependent effects, load history, creep, shrinkage. aging of concrete and relaxation of prestress were considered. Changes in boundary conditions and loads, installing and removing frame elements, stressing, restressing and removing cables and prestressing tendons were incorporated for modeling segmental erection operations. One typical example on segmentally erected prestressed concrete cable-stayed bridge was presented to illustrate the analysis method. Results of this example show that it is important to follow the development of stresses and deformations at all stages of construction to predict the true response of the bridge through its various load history.

  • PDF

Development of Polymer Impregnants and Properties of Polymer Impregnated Concrete (폴리머침투제의 개발과 폴리머침투콘크리트의 특성에 관한 연구)

  • Byun, Keun Joo;Lee, Sang Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.1
    • /
    • pp.71-84
    • /
    • 1992
  • Polymer-Impregnated Concrete(PIC) is a composite material of concrete and polymer. PIC has superior properties compared to conventional cement concrete, such as strength, stiffness, toughness, durability, water-proofing, chemical resistance. However, the usage of PIC has been limited to repairing materials and non-structural applications due to the lack of the design criteria and the analytical model to determine structural behavior. The objective of this study is experimentally to develop the optimum mixing proportions of polymer impregnants and the stress-strain responses, the strength characteristics, the fatigue and creep behaviors, and the durabilities of MMA(methyl methacrylate)-based PIC.

  • PDF

Integral Abutment Bridge behavior under uncertain thermal and time-dependent load

  • Kim, WooSeok;Laman, Jeffrey A.
    • Structural Engineering and Mechanics
    • /
    • v.46 no.1
    • /
    • pp.53-73
    • /
    • 2013
  • Prediction of prestressed concrete girder integral abutment bridge (IAB) load effect requires understanding of the inherent uncertainties as it relates to thermal loading, time-dependent effects, bridge material properties and soil properties. In addition, complex inelastic and hysteretic behavior must be considered over an extended, 75-year bridge life. The present study establishes IAB displacement and internal force statistics based on available material property and soil property statistical models and Monte Carlo simulations. Numerical models within the simulation were developed to evaluate the 75-year bridge displacements and internal forces based on 2D numerical models that were calibrated against four field monitored IABs. The considered input uncertainties include both resistance and load variables. Material variables are: (1) concrete elastic modulus; (2) backfill stiffness; and (3) lateral pile soil stiffness. Thermal, time dependent, and soil loading variables are: (1) superstructure temperature fluctuation; (2) superstructure concrete thermal expansion coefficient; (3) superstructure temperature gradient; (4) concrete creep and shrinkage; (5) bridge construction timeline; and (6) backfill pressure on backwall and abutment. IAB displacement and internal force statistics were established for: (1) bridge axial force; (2) bridge bending moment; (3) pile lateral force; (4) pile moment; (5) pile head/abutment displacement; (6) compressive stress at the top fiber at the mid-span of the exterior span; and (7) tensile stress at the bottom fiber at the mid-span of the exterior span. These established IAB displacement and internal force statistics provide a basis for future reliability-based design criteria development.

Effects of Material Characteristics on the Time-dependant Behavior of Prestressed Concrete Box Girder Bridges Constructed by Free Cantilever Method (재료특성치의 변화에 따른 캔틸레버 공법 프리스트레스트 콘크리트 박스거더 교량의 장기거동 분석)

  • 오병환;양인환
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.1
    • /
    • pp.179-188
    • /
    • 1998
  • 캔틸레버 공법으로 시공되는 프리스트레스트 콘크리트 박스거더 교량의 구조적 거동은 단계적 시공에 따른 구조물의 순차적 변화 및 콘크리트의 재료적 특성에 의해 시간 의존적 거동을 나타낸다. 콘크리트의 시간의존적 특성, 즉 콘크리트의 크리프 및 건조수축 특성은 현장타설 세그멘탈 캔딜레버공법으로 가설되는 콘크리트 교량의 설계 및 시공에서 매우 중요한 역할을 한다. 본 연구에서는 콘크리트의 크리프 및 건조수축 특성이 교량의 시간의존적 거동, 특히 처짐 및 텐던응력예측에 미치는 영향을 연구하였다. 교량해석은 본 연구진에 의해 개발된 프리스트레스트 콘크리트 교량해석기법 및 프로그램을 이용하여 크리프의 ACI 모델, CEB-FIB모델, 그리고 국내 도로교 시방서 모델을 고려하여 해석하였다. 해석결과 최종크리프 값의 크기에 따라 장기처짐의 발생량이 차이가 큰 것으로 나타나고 있으며, 최종건조수축량과 상대습도도 영향을 주는 것으로 나타났다. 또한 ACI 모델과 CEB-FIB모델간에도 차이가 큰 것으로 나타나 실제교량의 크리프 특성 및 건조수축 특성의 정확한 예측이 교량의 정밀시공 및 거동예측에 매우 중요한 것으로 나타나고 있다.

Design and Construction of the Burj Dubai Concrete Building Project (버즈 두바이 콘크리트 건물의 설계와 시공)

  • Abdelrazaq, Ahmad
    • Magazine of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.28-35
    • /
    • 2008
  • The Burj Dubai Project will be the tallest structure ever built by man; when completed the tower will be more than 700 meter tall and more than 160 floors. While the early integration of aerodynamic shaping and wind engineering considerations played a major role in the architectural massing and design of this multi-use/residential tower, where mitigating and taming the dynamic wind effects was one of the most important design criteria, the material selection for the structural systems of the tower was also a major consideration and required detailed evaluation of the material technologies and skilled labor available in the market at the time Concrete was selected for its strength, stiffness, damping, redundancy, moldability, free fireproofing, speed of construction, and cost effectiveness. In addition, the design challenges of using concrete for the design of the structural system components will be addressed. The focus on this paper will also be on the early planning of the concrete works of the Burj Dubai Project.

Time-Dependent Behavior of Saturated Cellulose Fiber Reinforced Cement(CFRC) Pipe

  • Choi, Yeol
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.3E
    • /
    • pp.161-164
    • /
    • 2006
  • Cellulose fiber reinforced cement(CFRC) pipe has been gradually introduced in the pipe market as a replacement of previously popular asbestos cement pipes. Since CFRC pipe is still relatively unknown in the pipe market, there are great concerns for the design and application in practice related to the time-dependent behavior of CFRC under long-term sustained loading. This paper presents an experimental investigation of the time-dependent behavior of cellulose fiber reinforced cement(CFRC) pipe. A total of six CFRC pipes were tested under various loading levels, and their vertical deformation was recorded to understand the characteristics of the time-dependent behavior. Based on the test results, a factor of safety(FS) of 1.82 is proposed, and a regression factor(R) of 1.88 is estimated for the application of CFRC pipes in practice.

The time-dependent analysis of restraint moment in continous PSC bridge (PSC 2경간 연속화에 따른 구속모멘트의 시간의존해석)

  • Koo, Min-Se;Choi, In-Sik;Park, Chan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.417-424
    • /
    • 2001
  • It is very important to know the magnitude of the restraint moment which is appeared at the inner-support of the continuous PSC girder. The Age-adjusted Effective Modulus Method(AEMM) is used to get the magnitude of the restraint moment for the purpose of the time-dependent analysis of the concrete. The important factors for computing the restraint moment, the creep coefficient and the shrinkage strain are computed by comparing Korean specification with AC1209. The restrain moment is created by the individual continuity load. The main purpose of this paper is ensuring the safety of structure by acquiring the time-dependent stress acting on the concrete because the process of construction is getting difficult due to the advance of technology. The negative moment at the inner-support is decreased about 55% by introducing the process of making the continuous bridge relatively early.

  • PDF

Durability Test for the Expansion Joint of High-Speed Railway Bridge (고속철도 교량 신축이음장치의 내구성 실험)

  • 김병석;곽종원;신호상;김영진;박성용;장익순
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.894-899
    • /
    • 1998
  • To absorb the deformation of live load, thermal gradient, shrinkage and creep in bridge structures and general structures, expansion joint has to be established. Especially expansion joint for high-speed railway bridge has to accomodate the static and dynamic forces and it not only has the durability of itself but also maintain the durability of structure by preventing the leakage of water. The actual used product of expansion joint for high-speed railway bridge is only ones made in France, Germany and Japan. In this study, the development process and test results of developed expansion joint are introduced which has the functional operation and durability enough to apply to high-speed railway bridges, roadway bridges and general structures. The tests consist of fatigue-durability test of 3 million times by high-speed rail load, leakage test and jack-up test for verifying the possibility of exchanging it. The performance of developed expansion joint satisfy the specification of Korea High Speed Rail Construction authority.

  • PDF