• Title/Summary/Keyword: crash box

Search Result 35, Processing Time 0.027 seconds

Development of a Preprocessor Program for Articulated Total Body (ATB의 전처리 프로그램 개발)

  • Lee, Dong-Jae;Son, Kwon;Choi, Kyung-Hyun;Jeon, Kyu-Nam
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.214-222
    • /
    • 2002
  • Computer simulations are widely used to analyze passenger safety in simulated traffic accidents. ATB, Articulated Total Body, is a computer simulation model developed to predict gross human body response to such dynamic environments as vehicle crashes and pilot ejections. ATB, whose code is open, has high flexibility and application capability that users can easily insert defined modules and functions. ATB is, however, inconvenient as it was coded in FORTRAN and it needs a formated input file. Moreover, it takes much time to make input files and to modify coding errors. This study aims to increase user friendliness by adding a preprocessor program, WINATB(WINdows ATB), to the conventional ATB. WINATB, programmed in Visual C++ and OpenGL, uses ATB IV as a dynamic solver. The preprocessor helps users prepare input files through graphic interface and dialog box. An additional postprocessor makes the graphical presentation of simulated results. In these case of the frontal crash, the rear impact and the side impact, the simulation results obtained by WINATB and MADYMO(MAthematical Dynamic Model) are compared to validate the effectiveness of WINAIB.

Crushing analysis of aluminum/composite FML conical structures; Numerical and experimental investigation

  • Afshin Tafazoli;Masoud Asgari
    • Structural Engineering and Mechanics
    • /
    • v.92 no.4
    • /
    • pp.421-432
    • /
    • 2024
  • Energy absorbers are crucial for absorbing collision energy, and much research is being done continuously to enhance their performance. These structures are widely applicable in automotive crash boxes and other passive safety systems, where efficient energy absorption and structural stability are essential for occupant protection during collisions. Safety and energy consumption concerns have led researchers to make the structures lighter in addition to better energy absorption. The most significant factors influencing the behavior of energy absorbers are the structure's geometry and material. Conical frustum, aluminum, and composite are among the things been raised in the research. In this research, aluminum structures were produced in two versions and with different geometric specifications. In experimental and numerical studies, aluminum and composite-coated samples were compared. The results show that utilizing an aluminum-composite combination can boost specific energy absorption by up to three times while increasing peak force and mean force. Also, by examining the impact of the parameters involved in the structure's energy absorption in the RSM method, the structure's performance has been significantly impacted by the use of composites. It has reduced the dependence of the energy absorption on the structure's geometry, which, along with controlling the process of regular destruction, has increased energy absorption.

A Method for Field Based Grey Box Fuzzing with Variational Autoencoder (Variational Autoencoder를 활용한 필드 기반 그레이 박스 퍼징 방법)

  • Lee, Su-rim;Moon, Jong-sub
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.6
    • /
    • pp.1463-1474
    • /
    • 2018
  • Fuzzing is one of the software testing techniques that find security flaws by inputting invalid values or arbitrary values into the program and various methods have been suggested to increase the efficiency of such fuzzing. In this paper, focusing on the existence of field with high relevance to coverage and software crash, we propose a new method for intensively fuzzing corresponding field part while performing field based fuzzing. In this case, we use a deep learning model called Variational Autoencoder(VAE) to learn the statistical characteristic of input values measured in high coverage and it showed that the coverage of the regenerated files are uniformly higher than that of simple variation. It also showed that new crash could be found by learning the statistical characteristic of the files in which the crash occurred and applying the dropout during the regeneration. Experimental results showed that the coverage is about 10% higher than the files in the queue of the AFL fuzzing tool and in the Hwpviewer binary, we found two new crashes using two crashes that found at the initial fuzzing phase.

Traffic Accident Analysis using Blackbox Technique (블랙박스 기법을 이용한 교통사고 분석)

  • Hong Yu Sik;Kim Cheon Sik;Yun Byeong Ju;Jo Yeong Im
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.452-455
    • /
    • 2005
  • In order to reproduce the traffic accident, It must save the data automatically which traffic accident 30 seconds before using black box. The Black Box can detect traffic crash accidents automatically, and record the vehicle's motion and driver's maneuvers during a pre-defined time Belied before and after the accident. But it is not easy for the police to catch running away criminal. Because, criminal can remove proof if it is 2 hours or 3 hours at least. Therefore, in this paper, in order to catch a hit and run driver in the traffic accident road, it developed an structured Query Language Server and made parts database algorithm.

  • PDF

Fatigue Characteristics on Welded Joint of Gear Box-Shank in Vibro Ripper for Rock Crash (암반 파쇄용 진동리퍼 기어박스-생크 용접부의 피로특성)

  • Oh, K.K.;Kim, Jaehoon;Kim, Y.W.;Park, J.Y.;Yang, G.S.;Park, J.W.;Kim, S.H.
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.6
    • /
    • pp.28-33
    • /
    • 2014
  • Vibro ripper worked by high frequency vibration is developed to do rock fragmentation and work of ripper is the different concept with other existing breakers. The gear box-shank welded joint of vibro ripper is very important part to deliver vibromotive force to tooth, so this part should endure high frequency vibration environments. The purposes of this study are to choose the optimal welding conditions for fatigue strength. The conditions were made using three kind of shank materials and two kind of filler metals. Shank materials are Hadox-hituf, Posten80 and AR400, and filler metals are CSF-71T and CSF-81T. The fatigue test was conducted each condition. Fracture surface was observed to estimate fracture characteristics of welded joint using SEM.

Development of an Inexpensive Black Box with Transmission of SOS and Theft Signal for an Agricultural Tractor (도난방지 및 구조신호 전송기능이 있는 저가형 농용트랙터 블랙박스 개발)

  • Kim, YuYong;Shin, Seung-Yeoub;Kim, Byounggap;Kim, Hyung Kweon;Cho, Yongho;Kim, Jinoh
    • Journal of Biosystems Engineering
    • /
    • v.37 no.6
    • /
    • pp.352-358
    • /
    • 2012
  • Purpose: The inexpensive black box system was developed to acquire and save driving information, to give the slope information, and to transmit SOS and theft signal. Method: The device consists of a main micro controller to acquire and save data, a GPS sensor module, a CDMA module, a touch LCD module, a RF (Radio Frequency) ID module, a SD (Secure Digital) card module, an emergency electric power source, a theftproof circuit, and a sensing device. The sensing device consists of a 8 bit micro controller, a accelerometer to detect impulse, two slope sensors to detect roll and pitch angle and a circuit to detect operation of 6 lighting devices. Results: Test results are as follows: 1) a tractor can be start up only with an electronic key (password or RFID card), 2) theft signal was transmitted when a tractor moved without an electronic key, 3) SOS was transmitted at conditions that rollover or crash happened. 4) 5 more than per 1s data are recorded at 5 minute intervals as new file name in SD card. Conclusions: This system can be used to save travelling record, reduce accident, prevent theft and rescue life in the accidents.

Study on the Behavior of Crash Box Applied with Aluminum Foam (알루미늄 폼이 적용된 크래쉬 박스의 거동에 관한 연구)

  • Min, Byoung-Sang;Cho, Jae-Ung
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.05b
    • /
    • pp.844-846
    • /
    • 2011
  • 충돌에서의 차체 손상과 충돌 성능 강화를 위하여 최근 크래쉬 영역의 개념이 설계개념에 도입되고 있다. 대표적인 예가 범퍼와 차체사이의 크래쉬 박스로 저속충돌시 충격에너지를 흡수하여 범퍼이후 차체에 에너지를 저감시켜 차량의 안전성 및 수리비 저감 등에 있어서도 매우 효과적인 역할을 하는 부품으로 이에 대한 개발을 위해 많은 연구들이 진행되고 있다. 본 논문에서는 충돌에너지 흡수성능이 우수한 크래쉬박스에 알루미늄 폼을 적용하였을 때 충돌에너지 흡수 및 거동에 대하여 충돌해석을 수행하였다.

  • PDF

Finite element analysis on the hydroforming of bumper stay (하이드로포밍을 이용한 범퍼스테이 FEM 성형해석)

  • Kang B. H.;Kim B. J.;Ryu J. S.;Son S. M;Moon Y. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.202-205
    • /
    • 2004
  • A bumper comprises a bumper face, a bumper beam for distributing the load from the impacts applied to the bumper face and reinforcing the bumper, an absorber member interposed between the bumper face and the bumper beam, and a pair of bumper stays which secure the bumper beam to the vehicle body. A conventional bumper stay structure is assembled into several stamped parts, so several processes are needed and the structure is complicated. In this study the bumper stay is applied to the tubular hydroforming which is known to have several advantages such as the reduction of the number of the process and the part weight. The thickness distribution of the tube is mainly considered to evaluate the hydro-formability and the shape of the tube is determined.

  • PDF

Analysis and Application of Mechanical Clinched Joint Using Cohesive Zone Model (접착영역모델을 이용한 클린칭 접합부의 해석 모델 설계 및 적용)

  • Hwang, B.N.;Lee, C.J.;Lee, S.B.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.19 no.4
    • /
    • pp.217-223
    • /
    • 2010
  • The objective of this study is to propose the FE model for mechanical clinched joint using cohesive zone model to analyze its failure behavior under impact loading. Cohesive zone model (CZM) is two-parameter failure criteria approach, which could describe the failure behavior of joint using critical stress and fracture toughness. In this study, the relationship between failure behavior of mechanical clinched joint and fracture parameters is investigated by FE analysis with CZM. Using this relationship, the critical stress and fracture toughness for tensile and shear mode are determined by H-type tensile test and lap shear test, which were made of 5052 aluminum alloy. The fracture parameters were applied to the tophat impact test to evaluate the crashworthiness. Compared penetration depth and energy absorption at the point where 50% of total displacement in result of FE analysis and experiment test for impact test, those has shown similar crashworthiness.

Mechanical Characteristics Analysis of Structural Light-weight Aluminum Foam (구조용 경량 알루미늄 발포금속의 기계적 특성 연구 분석)

  • Ma, Jeong Beom;Lee, Jeong Ick
    • Journal of the Korea Convergence Society
    • /
    • v.2 no.3
    • /
    • pp.1-6
    • /
    • 2011
  • Aluminum foam is one of the representative light-weight materials. In this study we analyzed the mechanical properties of the aluminum foam structures. Aluminum materials with pores have novel mechanical characteristics such as flame retardancy, damping, and energy absorption which are superior to those of polymer foam. Furthermore its reusable properties draw considerable interests. General properties, energy and acoustic absorption will be investigated and future research issues such as binding techniques of foam materials with other structures will be discussed through foam application examples.