• Title/Summary/Keyword: crane equipment

Search Result 170, Processing Time 0.023 seconds

Design Methodology of Yard Layout in Port Container Terminal (컨테이너터미널의 장치장 레이아웃 설계방법)

  • Choi Yong-Seok;Ha Tae-Young
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.11a
    • /
    • pp.183-188
    • /
    • 2004
  • This paper presents a method for designing layout on the yard and evaluating alternative designs of the layout by applying simulation. The design method is based on the concepts of the conventional port container terminal with yard layout, In general, yard design of the container terminal is consists of the two major parts. One is to divide yard area between the number of sections and the number of runs and the other is to decide the number of equipment that is the yard truck and yard crane. In the past days, this design was depended on the experience of the terminal operator and the reproduction of the conventional terminal layout because it is a very complex decision problem. In this paper, we suggest the method of yard design as a conceptual procedure and estimate the efficiency of the container crane and the optimal number of equipment using simulation. In the experiment results, the number of sections and runs on yard area, the number of yard truck per container crane and the number of yard crane per run are decided. In addition, the traffic flow among blocks on yard layout is estimated in terms of rate.

  • PDF

Design and Implementation of the Simulator for Evaluating the Performance of Container Cranes (컨테이너크레인 성능평가를 위한 시뮬레이터 설계 및 구현)

  • Won, Seung-Hwan;Choi, Sang-Hei
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.3
    • /
    • pp.119-136
    • /
    • 2009
  • According to the increase of container flows and the appearance of large-sized container vessels, the container handling equipment in ports is evolving continuously. This research introduces the simulation model for evaluating in detail the mechanical productivity of container cranes. The model considers a single trolley and dual trolleys as the mechanism of a container crane and a single lift, a twin lift, and a tandem lift as the spreader type of it. Additionally, the detail specifications such as the dimension and the speed of a container crane are inputted and the kinematic characteristics of it are simulated. The model also considers the size of a vessel, the storage position of containers in the vessel, and the weight of containers as external physical constraints. Experimental conditions can be configured conveniently because various parameters in the model are separated. Moreover, the model can accommodate flexibly new equipment types and the changes of the existing equipment because it is designed and developed in object-oriented concept.

  • PDF

Development of Analytical Model of Spindle and Rack Gear Systems for Knuckle Boom Crane (굴절식 크레인의 스핀들과 랙 기어 응력 해석 모델 개발)

  • An, Junwook;Lee, Kwang Hee;Gyu, Yusung;Jo, Je Sang;Lee, Chul Hee
    • Journal of Drive and Control
    • /
    • v.14 no.2
    • /
    • pp.23-29
    • /
    • 2017
  • In this study, a flexible multi-body dynamic simulation model of a knuckle boom crane is developed to evaluate the stress of spindle and rack gears under dynamic working conditions. It is difficult to predict potential critical damage to a knuckle boom crane if only the static condition is considered during the development process. To solve this issue, a severe working scenario (high speed with heavy load) was simulated as a boundary condition for testing the integrity of the dynamic simulation model. The crane gear model is defined as a flexible body so contact analysis was performed. The functional motion of a knuckle boom crane is generated by applying forces at each end of the rack gear, which was converted from hydraulic pressure measured for the experiment. The bending and contact stress of gears are theoretically calculated to validate the simulation model. In the simulation, the maximum stress of spindle and rack gears are observed when the crane abruptly stops. Peak impact force is produced at the contact interface between pinion and rack gears due to the inertia force of the boom. However, the maximum stress (bending/contact) of spindle and rack are under the yield stress, which is safe from damage. By using the developed simulation model, the experiment process is expected to be minimized.

A Study on a Structure of Obstacle Detection System of AGV for Port Automation (ATC의 Anti-Sway를 위한 기구적 고찰)

  • 김두형;박경택;박찬훈;신영재
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.197-205
    • /
    • 2000
  • Productivity of container cranes and gantry cranes is influenced by the performance of crane hardware and cycle time. Cycle time in container handling is influenced by the path of containers and relative positioning of containers. So we have to minimize the sway of containers and spreaders to minimize relative positioning time. And sway minimization is influenced by the skill of workers in manual gantry cranes. In this paper, we will survey some anti-sway systems. Each system has some merits and some shortages. And we will show our choice and its experimental equipment which is under construction.

  • PDF

Development of Automatic Steering System using Image Processing Technique (영상처리기법을 이용한 자율주행시스템 개발)

  • Cho, Chi-Woon;Park, Sung-Won
    • IE interfaces
    • /
    • v.10 no.2
    • /
    • pp.69-77
    • /
    • 1997
  • Material handling equipment such as container cranes and transtainer cranes have made larger and faster to improve the efficiency of container handling. As conditions of use in container terminal have become severe, and also the automation level required has become higher. For the high level automation for transtainer crane, the following characteristics have to be developed 1) Container Terminal Operation & Planning System with high efficiency. 2)Autosteering System of transtainer crane with precise position sensing system using image processing and feedback control system. 3)Automatic Position Identification System with transponder. We have developed an AGSS(Automatic Gantry Steering System) of transtainer crane with image processing technology preferentially. In this paper, the system will be introduced.

  • PDF

RMQC Monitoring Method via PLC (PLC를 이용한 RMQC 모니터링 기법)

  • Kim, Y.H.;Jung, D.J.;Bae, J.I.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.3189-3191
    • /
    • 2000
  • This paper is aimed to handle quick work for all the workers and to improve the productivity by adding more effective content in Crane Monitoring System. The contributing proportion of the increase of port productivity is more increasing concerning not only the port industry, but also all the informations of container crane which is the representative equipment by the rapid increase of the volume of freight of port. The basic of rapid service is the improvement of the productivity, the information of operation as to the productivity of crane for the quick handling within yard and especially the informations of breakdown and to handle breakdown as soon as possible has a great effect on the increase of productivity.

  • PDF

A Study on the Safety Risk of Telescoping Work of Tower Cranes (타워크레인 텔레스코핑 작업의 안전리스크 대응방안 연구)

  • Lee, Dong-Hoon;Choi, Jae-Hwi;Kim, Sun-Kuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.05b
    • /
    • pp.9-13
    • /
    • 2009
  • As recent construction projects are bigger and higher, the importance of lifting is increasing. In construction sites tower cranes are an essential lifting equipment covering were than 50% of all construction activities. But due to neglect of safety supervision, tower crane-related accidents are frequently taking place. Since most of construction activities is done in heights, the accidents are more likely to be catastrophic. According to an analysis of the causes of tower crane-related accidents, 49% of all accidents claimed for certain periods($1999{\sim}2003$) occurred in the process of telescoping work. Therefore, this research is conducted with the object of analyzing telescoping work of tower cranes and presenting solutions against safety risk. It is expected that the results of this study can be used as useful basic data or material when preparing for effective safety management for tower cranes.

  • PDF

A Study for Effective Operating of Crane Using Monitoring Method (모니터닝 기법을 이용한 크레인의 운영 향상에 관한 연구)

  • Bae, Jong-Il;Hwang, Byung-Moon
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2759-2760
    • /
    • 2003
  • The contributing proportion of the increase of port productivity is more increasing concerning not only the port industry, but also all the informations of container crane which is the representative equipment by the rapid increase of the volume of freight of port. The basic of rapid service is the improvement of the productivity, the information of operation as to the productivity of crane for the quick handling within yard and especially the informations of breakdown and to handle breakdown as soon as possible has a great effect on the increase of productivity.

  • PDF

A Study on the Development of a New Concept Crane (새로운 형태의 컨테이너 크레인의 개발에 관한 연구)

  • 박찬훈;김두형;신영재;박경택;고재웅
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1999.10a
    • /
    • pp.273-280
    • /
    • 1999
  • Yard cranes are very useful equipments for handing of heavy containers, But rope-driven yard cranes must have a little of sway and skew motion because ropes are passive mechanical device. Therefore rope-driven yard cranes require skilled drivers to depress sway and skew motions. So many researches have been concentrated on anti-sway and anti-skew algorithm controlling trolley speed or rope tension. Although many efforts, the rope-driven method is not proper to an automated yard equipment because of sway and skew motion. This paper will propose a new concept yard crane which has a new structure, overcomes defects of rope-driven cranes and is proper to automation. And we will study its actuality