• 제목/요약/키워드: crack width and spacing

검색결과 60건 처리시간 0.045초

고강도콘크리트 부재의 균열폭 및 균열간격 계산에 관한 연구 (Calculation of Crack Width and Crack Spacing of High-Strength Concrete Members)

  • 정기오;이기열;김대중;김우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.227-232
    • /
    • 2002
  • This paper describes a calculation of an average crack spacing and the maximum crack width for the high-strength concrete tensile and flexural members. Based on the uniform bond stress distribution of the average steel and concrete strains over the transfer length, the crack spacing and the crack width are proposed to utilize influence of the concrete strength and the cover thickness. This analytical results presented in this paper indicate that the proposed equations can be more effectively estimated the maximum crack width and the average crack spacing of the reinforced concrete flexural and tensile members.

  • PDF

Determination of crack spacing and crack width in reinforced concrete beams

  • Piyasena, R.;Loo, Yew-Chaye;Fragomeni, Sam
    • Structural Engineering and Mechanics
    • /
    • 제15권2호
    • /
    • pp.159-180
    • /
    • 2003
  • In this paper spacing and width of flexural cracks in reinforced concrete beams are determined using two-dimensional finite element analysis. At early loading stages on the beam the primary crack spacing is based on the slip length, which is the development length required to resist the steel stress increment that occurs at a cracked section on the formation of the first flexural crack. A semi-empirical formula is presented in this paper for the determination of the slip length for a given beam. At higher load levels, the crack spacing is based on critical crack spacing, which is defined as the particular crack spacing that would produce a concrete tensile stress equal to the flexural strength of concrete. The resulting crack width is calculated as the relative difference in extensions of steel reinforcement and adjacent concrete evaluated at the cracked section. Finally a comparative study is undertaken, which indicates that the spacing and width of cracks calculated by this method agree well with values measured by other investigators.

장기간 현장조사를 통한 연속철근 콘크리트 포장의 균열간격과 균열폭 특성 분석 (Characteristics of Crack Spacing and Crack Width of Continuously Reinforced Concrete Pavement Based on Long-Term Field Surveys)

  • 오한진;조영교;김성민
    • 한국도로학회논문집
    • /
    • 제18권3호
    • /
    • pp.75-86
    • /
    • 2016
  • PURPOSES : The purpose of this study is to investigate characteristics of crack spacing and crack width and their relationship in continuously reinforced concrete pavement (CRCP) based on the data obtained from long-term field observations. METHODS : The crack spacings and crack widths are measured periodically over 10 years at two different CRCP sections: one with asphalt bond breaker beneath concrete slab, and the other with bonded lean concrete base beneath concrete slab. The effects of steel ratio, type of underlying layer, terminal treatment method, and seasonal temperature change on the crack characteristics are evaluated by analyzing the measured data. RESULTS : The CRCP with lean concrete base shows smaller crack spacings than those of the CRCP with asphalt bond breaker. As the steel ratio increases, both the crack spacing and crack width tend to decrease. The crack width becomes larger as the crack age increases, but once the crack age is over a certain value the crack width tends to converge. When the terminal anchor lug system is not used and the expansion joints are employed at the terminals, the crack spacings and crack widths increase near the terminal sections. The crack spacing and crack width seem to be proportional each other, but not necessarily linearly, and their relationship is more distinguished in the summer when the crack widths become smaller. CONCLUSIONS : The steel ratio, underlying layer type, terminal treatment method, and seasonal temperature change affect the characteristics of cracks and the crack spacing and crack width are related to each other.

기계식 연속철근콘크리트포장의 현장 적용성 및 거동 분석 연구 (Field Application and Performance of Continuously Reinforced Concrete Pavement via Mechanical Tube-feeding Method)

  • 최훈석
    • 한국도로학회논문집
    • /
    • 제18권2호
    • /
    • pp.43-49
    • /
    • 2016
  • PURPOSES : The field application and performance of continuously reinforced concrete pavement (CRCP), constructed by using the mechanical tube-feeding method, are evaluated in this study. METHODS: The location of the rebar was evaluated by using the MIRA system. The early-age CRCP performance was evaluated via visual survey, in which the crack spacing and crack width were examined. RESULTS: The location of longitudinal reinforcing bars was evaluated via MIRA testing and the results showed that the longitudinal rebars all lie within a given tolerance limit (${\pm}2.5cm$) of the target elevation. In addition, owing to the low temperature when the concrete was pured, the crack spacing in the Dae-Gu direction is slightly wider than that of the Gwang-Ju direction. Almost all of the crack spacings lay within the range of 1.0 m~3.0 m. A crack width of <0.3 mm was measured at the pavement surface. However, as revealed by the field survey, the crack spacing was not correlated with the crack width. CONCLUSIONS : In CRCP constructed by using the mechanical tube-feeding method, almost all of the longitudinal reinforcing bars lay within the tolerance limit (2.5 cm) of the target elevation. The concrete-placing temperature affects the crack spacing, owing to variations in the zero-stress temperature. Crack survey results show that there is no correlation between the crack spacing and crack width in CRCP.

RC보의 휨 균열폭 및 균열간격에 관한 실험 및 이론 연구 (Assessment of Flexural Crack Width and Crack Spacing of Reinforced Concrete Beams)

  • 오병환;김세훈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.105-108
    • /
    • 2000
  • With exact analysis of cracks in RC beam, present or past stress states can be traced. For analysis of Flexural cracks, experiments are carried out focusing on variation of crack widths and crack spacing due to stress, beam properties. The crack width expectation formulas of each code are compared and initial crack spacing expectation formula is proposed.

  • PDF

철근(鐵筋)콘크리트 휨부재의 균열폭 및 균열간격의 결정 (Determination of Crack Width and Crack Spacing in Reinforced Concrete Flexural Members)

  • 강영진;오병환
    • 대한토목학회논문집
    • /
    • 제5권4호
    • /
    • pp.103-111
    • /
    • 1985
  • 본(本) 논문(論文)에서는 철근콘크리트 휨부재의 균열폭과 균열간격 결정에 관한 연구(硏究)가 이루어 졌다. 철근콘크리트 휨부재의 균열폭 및 균열간격의 유도는 최근에 진전된 균열이론에 의거하였으며, 설계(設計) 및 해석시(解析時)에 실제적으로 사용할 수 있는 균열폭 및 균열간격 예측 공식을 제안하였다. 제안된 공식과의 비교를 위하여 철근콘크리트보에 대한 균열거동 실험이 수행되었다. 본(本) 예측 공식(公式)을 본(本) 연구(硏究)의 실험결과 및 타연구자(他硏究者)의 실험자료와 비교한 결과 만족스런 결과를 얻었다. 본(本) 연구(硏究)에서 제안된 공식을 현재 ACI 시방서(示方書)에서 채택하고 있는 Gergely & Lutz 공식(公式)과도 비교한 결과, 본(本) 공식(公式)이 거의 모든 경우, 더 정확한 예측을 하고 있음을 알 수 있었으며, 실제 설계 및 해석시에 지침이 될 수 있을 것으로 사료된다.

  • PDF

유효탄성계수를 반영한 철근콘크리트 휨부재의 균열제어를 위한 철근 간격 (A Steel Spacing for Crack Control in RC Flexural Members with an Effective Modulus of Elastic)

  • 최승원
    • 한국산학기술학회논문지
    • /
    • 제19권5호
    • /
    • pp.98-105
    • /
    • 2018
  • 철근 콘크리트 부재에서 균열은 구조적 요인 뿐만 아니라 재료적 인자에 의해서도 발생한다. 이러한 균열의 크기와 발생 위치를 파악하는 것은 매우 어렵다. 도로교설계기준(한계상태설계법)과 콘크리트구조기준(2012)에서는 균열을 제어하기 위해 직접균열제어 방법과 간접균열제어 방법을 제시하였다. 콘크리트구조기준 본문에서는 사용하중 하에서 철근 간격을 사용하여 간접적으로 균열을 제어한다. 이에 반해, 콘크리트구조기준 부록에서는 지속하중 하에서 균열폭을 통해 직접적으로 균열을 제어한다. 즉, 균열 제어를 위해 고려하는 하중 상태가 상이하다. 그러나 도로교설계기준에서는 사용하중조합에서 균열을 제어하고, 유효탄성계수를 사용하고 있다. 따라서 이 연구에서는 고정 하중과 활하중의 비율을 반영할 수 있는 유효탄성계수를 적용한 설계 균열폭으로부터 최대철근간격을 산정하였다. 그리고 변수 해석을 수행하여 합리적인 균열 검증 방법에 대하여 모색하였다. 해석 결과 콘크리트구조기준으로부터 유도된 철근 간격은 도로교설계기준으로부터 유도된 값보다 작아 보수적인 설계를 유도하였다. 또한, 이 연구에서 제시한 최대철근간격은 직접균열제어와 간접균열제어 사이의 차이를 제거하여 해석의 일관성을 확보할 수 있는 것으로 판단된다.

철근 콘크리트부재에서 최소균열간격을 이용한 최대균열폭 산정 (Estimation of Maximum Crack Width Using Minimum Crack Spacing in Reinforced Concrete)

  • 고원준;양동석;장원석;박선규
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.903-908
    • /
    • 2001
  • This paper deals with the estimation of the maximum flexural crack widths using minimum crack spacing for reinforced concrete members. The proposed method utilizes the conventional crack and bond-slip theories as well as bonding transfer length and effects of creep and shrinkage between the reinforcement and concrete. An analytical equation for the estimation of the maximum flexural crack width is formulated as a function of mean bond stress. The validity, accuracy and efficiency of the proposed method are established by comparing the analytical results with the experimental data and the major code specifications (e.g., ACI, CEB-FIP Model code, Eurocode 2, etc.). The analytical results of analysis presented in this paper indicate that the proposed method can be effectively estimated the maximum flexural crack width of the reinforced concrete members.

  • PDF

A model for the restrained shrinkage behavior of concrete bridge deck slabs reinforced with FRP bars

  • Ghatefar, Amir;ElSalakawy, Ehab;Bassuoni, Mohamed T.
    • Computers and Concrete
    • /
    • 제20권2호
    • /
    • pp.215-227
    • /
    • 2017
  • A finite element model (FEM) for predicting early-age behavior of reinforced concrete (RC) bridge deck slabs with fiber-reinforced polymer (FRP) bars is presented. In this model, the shrinkage profile of concrete accounted for the effect of surrounding conditions including air flow. The results of the model were verified against the experimental test results, published by the authors. The model was verified for cracking pattern, crack width and spacing, and reinforcement strains in the vicinity of the crack using different types and ratios of longitudinal reinforcement. The FEM was able to predict the experimental results within 6 to 10% error. The verified model was utilized to conduct a parametric study investigating the effect of four key parameters including reinforcement spacing, concrete cover, FRP bar type, and concrete compressive strength on the behavior of FRP-RC bridge deck slabs subjected to restrained shrinkage at early-age. It is concluded that a reinforcement ratio of 0.45% carbon FRP (CFRP) can control the early-age crack width and reinforcement strain in CFRP-RC members subjected to restrained shrinkage. Also, the results indicate that changing the bond-slippage characteristics (sand-coated and ribbed bars) or concrete cover had an insignificant effect on the early-age crack behavior of FRP-RC bridge deck slabs subjected to shrinkage. However, reducing bar spacing and concrete strength resulted in a decrease in crack width and reinforcement strain.

합성거더 부모멘트부의 균열거동 평가 (Cracking Behavior of Steel-Concrete Composite Girders at Negative Moment Region)

  • 윤석구;설대호;류형근
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.402-405
    • /
    • 2006
  • Inner support regions of continuous steel and concrete composite bridge decks, transverse crackings are easely developed by tensile forces due to live loads and primary and secondary effects of concrete shrinkage. Since these cracks have an influence on the durability of bridge decks, crack width should be controlled within allowable limit values. Although crack width is a function of steel stress, bar diameter, bar spacing, etc, the current code for the amount of longitudinal reinforcements provides only one value of 2 percent of the concrete area. In order to investigate cracking bahaviors of composite girders with the variation of the longitudinal steel ratios, negative flexural tests are conducted on five composite girders and crack width and crack spacing are compared to ACI Code and Eurocode. Based on the test results, it is discussed the suitability of the current code for the longitudinal steel ratio.

  • PDF