• Title/Summary/Keyword: crack prediction

Search Result 557, Processing Time 0.03 seconds

Nonlinear analysis of PSC bridge with strengthened of externally tendon Considering Construction Sequences (외부강선으로 보강된 PSC 교량의 시공단계별 비선형 해석)

  • Park, Jae-Guen;Lee, Byeong-Ju;Kim, Moon-Young;Shin, Hyun-Mock
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.283-288
    • /
    • 2007
  • This paper presents an analytical prediction of Nonlinear characteristics of prestressed concrete bridges by strengthened of externally tendon considering the work sequence, using beam-column element based on flexibility method and tendon element. The beam-column element was developed with reinforced concrete material nonlinearities which are based on the smeared crack concept. The fiber hysteresis rule of beam-column element is derived from the uniaxial constitutive relations of concrete and reinforcing steel fibers. The tendon element represent the bonded tendon and unbonded tendon behaviors. Beam-column element and tendon element was be subroutine A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of RC and PSC structures was used. The proposed numerical method for prestressed concrete structures by strengthened of externally tendon is verified by comparison with reliable experimental results.

  • PDF

Thermal Crack Control of Massive Foundation Mat of Office-tel Using Thermal Analysis (오피스텔 대형 기초매트의 온도해석을 통한 온도균열제어)

  • 김태홍;하재담;김동석;이종열
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1181-1186
    • /
    • 2000
  • The crack of concrete induced by the heat of hydration is a serious problem, particularly in concrete structures such as biers, thick walls, box type walls, mat-slab of nuclear reactor buildings, dams or foundations of high rise buildings, etc.. As a result of the temperature rise and restriction condition of foundation, the thermal stress which may induce the cracks can occur. Therefore the various techniques of the thermal stress control in massive concrete have been widely used. One of them is prediction of the thermal stress, besides low-heat cement which mitigates the temperature rise, design change which considers steel bar reinforcement, operation control and so on. In this study, firstly it introduce the thermal cracks control technique by employing low-heat cement concrete, thermal stress analysis considering season. Secondly it shows the application of the cracks control technique like block placement.

A review on prognostics and health management and its applications (건전성예측 및 관리기술 연구동향 및 응용사례)

  • Choi, Joo-ho
    • Journal of Aerospace System Engineering
    • /
    • v.8 no.4
    • /
    • pp.7-17
    • /
    • 2014
  • Objective of this paper is to introduce a new technology known as prognostics and health management (PHM) which enables a real-time life prediction for safety critical systems under extreme loading conditions. In the PHM, Bayesian framework is employed to account for uncertainties and probabilities arising in the overall process including condition monitoring, fault severity estimation and failure predictions. Three applications - aircraft fuselage crack, gearbox spall and battery capacity degradation are taken to illustrate the approach, in which the life is predicted and validated by end-of-life results. The PHM technology may allow new maintenance strategy that achieves higher degree of safety while reducing the cost in effective manner.

A Service Life Prediction for Joint and Cracked Concrete Exposed to Carbonation Based on Stochastic Approach (신뢰성 해석을 통한 탄산화에 노출된 타설이음부 및 균열부 콘크리트의 내구수명 평가)

  • Kwon, Seung-Jun;Park, Sang-Sun;Lee, Sang-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.597-600
    • /
    • 2006
  • In this study, field survey of carbonation for RC column in city is carried out and carbonation behavior in sound, joint, and cracked concrete is also analyzed. Futhermore, probability of durability failure with time is calculated through considering probability variables such as concrete cover depth and carbonation depth which are obtained from field survey. The probability of durability failure in cracked concrete with considering crack width and time is also calculated and service life is predicted based on intended failure probability in domestic specification. Through this study, it is known that service life in a RC column is evaluated differently for local conditions and each service life is rapidly decreased with decrease in cover depth and increase in crack width.

  • PDF

Control of Crack Induced by the Temperature Difference During Hydration (수화발열시 내외부 온도차가 유발하는 균열의 제어)

  • Jeon, Se-Jin;Choi, Myoung-Sung;Kim, Young-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.681-684
    • /
    • 2006
  • Control of the temperature difference across a section is an effective way to minimize the hydration-heat-induced cracks for the structures where internal restraint is dominant. However, surface temperature may not be easily measured in situ due to the difficulty in maintaining the correct location during casting. A prediction equation for the temperature difference is proposed which can be applied without directly measuring the surface temperature if the curing condition and ambient temperature are known. Some strategies to control the temperature difference are revisited and a reasonable range of the temperature difference to minimize the crack is discussed.

  • PDF

Thermal Design of IGBT Module with Respect to Stability (IGBT소자의 열적 안정성을 고려한 방열설계)

  • Lee Joon-Yeob;Song Seok-Hyun
    • Proceedings of the KIPE Conference
    • /
    • 2002.11a
    • /
    • pp.205-208
    • /
    • 2002
  • Thermal design is required with considering thermal stability to verify the reliability of electric power device with using IGBT. Numerical analysis is performed to analyzed the change in thermal resistance with respect to the various thermal density of heating element. Correlations between thermal resistance and heat generation density are established. With using these correlations, performance curve is composed with respect to the change in thermal resistance of cooling conditions for natural convection and forced convection. Thermal fatigue is occurred at the Inside and outside of IGBT by repeated heat load. The crack is occurred between base plate and ceramic substrate for the inside. When the crack length is 4mm, the failure is occurred. Therefore, Thermal design method considering thermal density, thermal fatigue resistance is presented on this study and it is expected to thermal design with considering life prediction.

  • PDF

Numerical Life Prediction Method for Fatigue Failure of Rubber-Like Material Under Repeated Loading Condition

  • Kim Ho;Kim Heon-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.473-481
    • /
    • 2006
  • Predicting fatigue life by numerical methods was almost impossible in the field of rubber materials. One of the reasons is that there is not obvious fracture criteria caused by nonstandardization of material and excessively various way of mixing process. But, tearing energy as fracture factor can be applied to a rubber-like material regardless of different types of fillers, relative to other fracture factors and the crack growth process of rubber could be considered as the whole fatigue failure process by the existence of potential defects in industrial rubber components. This characteristic of fatigue failure could make it possible to predict the fatigue life of rubber components in theoretical way. FESEM photographs of the surface of industrial rubber components were analyzed for verifying the existence and distribution of potential defects. For the prediction of fatigue life, theoretical way of evaluating tearing energy for the general shape of test-piece was proposed. Also, algebraic expression for the prediction of fatigue life was derived from the rough cut growth rate equation and verified by comparing with experimental fatigue lives of dumbbell fatigue specimen in various loading condition.

Evaluation of die life during hot forging process (열간 단조 공정의 금형 수명 평가)

  • 이현철;박태준;고대철;김병민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.1051-1055
    • /
    • 1997
  • Hot forging is widely used in the manufacturing of automotive component. The mechanical, thermal load and thermal softening which is happened by the high temperature die in hot forging. Tool life of hot forging decreases considerably due to the softening of the surface layer of a tool caused by a high thermal load and long contact time between the tool and workpieces. The service life of tools in hot forging process is to a large extent limited by wear, heat crack, plastic deformation. These are one of the main factors affecting die accuracy and tool life. It is desired to predict tool life by developing life prediction method by FE-simulation. Lots of researches have been done into the life prediction of cold forming die, and the results of those researches were trustworthy, but there have been little applications of hot forming die. That is because hot forming process has many factors influencing tool life, and there was not accurate in-process data. In this research, life prediction of hot forming die by wear analysis and plastic deformation has been carried out. To predict tool life, by experiment of tempering of die, tempering curve was obtained and hardness express a function of main tempering curve.

  • PDF

An evaluation methodology for cement concrete lining crack segmentation deep learning model (콘크리트 라이닝 균열 분할 딥러닝 모델 평가 방법)

  • Ham, Sangwoo;Bae, Soohyeon;Lee, Impyeong;Lee, Gyu-Phil;Kim, Donggyou
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.513-524
    • /
    • 2022
  • Recently, detecting damages of civil infrastructures from digital images using deep learning technology became a very popular research topic. In order to adapt those methodologies to the field, it is essential to explain robustness of deep learning models. Our research points out that the existing pixel-based deep learning model evaluation metrics are not sufficient for detecting cracks since cracks have linear appearance, and proposes a new evaluation methodology to explain crack segmentation deep learning model more rationally. Specifically, we design, implement and validate a methodology to generate tolerance buffer alongside skeletonized ground truth data and prediction results to consider overall similarity of topology of the ground truth and the prediction rather than pixel-wise accuracy. We could overcome over-estimation or under-estimation problem of crack segmentation model evaluation through using our methodology, and we expect that our methodology can explain crack segmentation deep learning models better.

A Study on the Fatigue Crack Propagation Behavior of Spot Welds under Tensile-shear Load (인장-전단 하중을 받는 점용접부의 피로균열 전파거동에 관한 연구)

  • 이용복
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.4
    • /
    • pp.27-33
    • /
    • 1997
  • Spot welding has been used in the sheet metal jointing processes because of its high productivity and convenience. In this study, effects of welding conditions on the fatigue life and prediction methods of fatigue life of spot welded joint have been studded . Fatigue life was estimated by stress index parameter considering multiaxial stresses. Fatigue tests were conducted with the tensile-shear specimens using SPCC. Fatigue life of spot welded joint was influenced by welding currents and was predicted exactly with taking into account StageIII.

  • PDF