• Title/Summary/Keyword: crack prediction

Search Result 557, Processing Time 0.028 seconds

Cracking behavior of transversely prestressed concrete box girder bridges (횡방향 프리스트레스트 박스거더의 균열거동 연구)

  • Oh, Byung-Hwan;Choi, Young-Choel
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.303-306
    • /
    • 2005
  • The cracking behavior of prestressed concrete members is important for the rational design of prestressed concrete structures. However, the test data on the cracking behavior of prestressed concrete structures are very limited. The purpose of the present study is to investigate the crack spacing and crack width in transversely post-tensioned decks of concrete box girder bridges under applied loading. For this purpose, large scale test members of concrete box girder segments were fabricated and tested. The crack widths, crack spacings and crack patterns were investigated for various load levels. The crack widths and steel strains were continuously monitored during the loading process. To derive a rational predicton equation for crack width, the bond characteristics of post-tensioned steel and nonprestressed rebar in the PSC members were explored first. This was done by measuring the strains of prestressing steel and nonprestressed rebar in the test members under loading. A simple equation for the prediction of maximum crack width in transversely post-tensioned concrete one-way slabs is proposed by considering bond characteristic of prestressing steel and nonprestressed reinforcement. The comparison of proposed equation with experimental data shows good correlation. The present study indicates that ACI and CEB-FIP code equations exhibit rather large deviation from test data on prestressed concrete members.

  • PDF

Relevance vector based approach for the prediction of stress intensity factor for the pipe with circumferential crack under cyclic loading

  • Ramachandra Murthy, A.;Vishnuvardhan, S.;Saravanan, M.;Gandhic, P.
    • Structural Engineering and Mechanics
    • /
    • v.72 no.1
    • /
    • pp.31-41
    • /
    • 2019
  • Structural integrity assessment of piping components is of paramount important for remaining life prediction, residual strength evaluation and for in-service inspection planning. For accurate prediction of these, a reliable fracture parameter is essential. One of the fracture parameters is stress intensity factor (SIF), which is generally preferred for high strength materials, can be evaluated by using linear elastic fracture mechanics principles. To employ available analytical and numerical procedures for fracture analysis of piping components, it takes considerable amount of time and effort. In view of this, an alternative approach to analytical and finite element analysis, a model based on relevance vector machine (RVM) is developed to predict SIF of part through crack of a piping component under fatigue loading. RVM is based on probabilistic approach and regression and it is established based on Bayesian formulation of a linear model with an appropriate prior that results in a sparse representation. Model for SIF prediction is developed by using MATLAB software wherein 70% of the data has been used for the development of RVM model and rest of the data is used for validation. The predicted SIF is found to be in good agreement with the corresponding analytical solution, and can be used for damage tolerant analysis of structural components.

Crack Growth Life Prediction of Hollow Shaft with Circumferential Through Type Crack by Torsion (원주방향 관통형 균열을 가지는 중공축의 비틀림에 의한 균열성장수명 예측)

  • Yeonhi Kim;Jungsun Park
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.2
    • /
    • pp.1-8
    • /
    • 2023
  • Power transmission shafts in rotary wing aircraft use a hollow shaft to reduce weight. We can apply linear elastic fracture mechanics to predict crack propagation behavior. This paper predicted crack growth life of a hollow shaft with a circumferential through-type crack by finite element analysis. A 2D finite element model was created by applying a torsion and forming elements considering cracks. We defined the initial crack length and performed the finite element analysis by increasing the crack length to derive stress intensity factor at crack tips. We defined the length just prior to the stress intensity factor exceeding the fracture toughness as the crack limit length. We calculated the crack limit length using a handbook and numerically integrated the crack growth rate equation to derive growth life of each crack. The growth life of each crack was compared to verify the proposed finite element analysis method.

Propagation of Crack in Concrete Subjected to Dynamic Loading (동적하중(動的荷重)을 받는 콘크리트의 구열(龜裂)성장)

  • Kang, Sung Hoo;Kim, Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.2
    • /
    • pp.135-145
    • /
    • 1988
  • This study deals with the prediction of crack propagation in concrete mortar subjected to static and dynamic load. Total 54 CLWL-DCB(Crack-line-loaded-double-cantilever beam) concrete mortar specimens were tested to measure crack growth using ASTM 561-80. Main variables were sand to cement ratio and water to cement ratio. The resulting load(P)-COD(Crack Opening Displacement; $2V_1$) curves and COD-CTOD (Crack Tip Opening Displacement; $2V_2$) curves were analyzed to calculate effective crack length and physical crack length by way of ASTM 561-80 proposed. Replica crack length were also obtained directly during the test. The differences in crack propagation between under static load and under dynamic load were investigated.

  • PDF

A local-global scheme for tracking crack path in three-dimensional solids

  • Manzoli, O.L.;Claro, G.K.S.;Rodrigues, E.A.;Lopes, J.A. Jr.
    • Computers and Concrete
    • /
    • v.12 no.3
    • /
    • pp.261-283
    • /
    • 2013
  • This paper aims to contribute to the three-dimensional generalization of numerical prediction of crack propagation through the formulation of finite elements with embedded discontinuities. The analysis of crack propagation in two-dimensional problems yields lines of discontinuity that can be tracked in a relatively simple way through the sequential construction of straight line segments oriented according to the direction of failure within each finite element in the solid. In three-dimensional analysis, the construction of the discontinuity path is more complex because it requires the creation of plane surfaces within each element, which must be continuous between the elements. In the method proposed by Chaves (2003) the crack is determined by solving a problem analogous to the heat conduction problem, established from local failure orientations, based on the stress state of the mechanical problem. To minimize the computational effort, in this paper a new strategy is proposed whereby the analysis for tracking the discontinuity path is restricted to the domain formed by some elements near the crack surface that develops along the loading process. The proposed methodology is validated by performing three-dimensional analyses of basic problems of experimental fractures and comparing their results with those reported in the literature.

On the mixed-mode crack propagation in FGMs plates: comparison of different criteria

  • Nabil, Benamara;Abdelkader, Boulenouar;Miloud, Aminallah;Noureddine, Benseddiq
    • Structural Engineering and Mechanics
    • /
    • v.61 no.3
    • /
    • pp.371-379
    • /
    • 2017
  • Modelling of a crack propagating through a finite element mesh under mixed mode conditions is of prime importance in fracture mechanics. In this paper, two crack growth criteria and the respective crack paths prediction in functionally graded materials (FGM) are compared. The maximum tangential stress criterion (${\sigma}_{\theta}-criterion$) and the minimum strain energy density criterion (S-criterion) are investigated using advanced finite element technique. Using Ansys Parametric Design Language (APDL), the variation continues in the material properties are incorporated into the model by specifying the material parameters at the centroid of each finite element. In this paper, the displacement extrapolation technique (DET) proposed for homogeneous materials is modified and investigated, to obtain the stress intensity factors (SIFs) at crack-tip in FGMs. Several examples are modeled to evaluate the accuracy and effectiveness of the combined procedure. The effect of the defects on the crack propagation in FGMs was highlighted.

A Fracture Mechanics Analysis of Bonded Repaired Skin/Stiffener Structures with Inclined Central Crack (경사균열을 갖는 Skin/Stiffener 구조물의 보수에 의한 균열의 파괴역학적 거동)

  • Chung, Ki-Hyun;Yang, Won-Ho;Kim, Cheol;Heo, Sung-Pil;Ko, Myung-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.292-297
    • /
    • 2001
  • Composite patch repair of cracked aircraft structures has been accepted as one of improving fatigue life and attaining better structural integrity. Analysis for the stress intensity factor at the skin/stiffener structure with inclined central crack repaired by composite stiffened panels are developed. A numerical investigation was conducted to characterize the fracture behavior and crack growth behavior. In order to investigate the crack growth direction, maximum tangential stress(MTS) criteria is used. The main objective of this research is the validation of the inclined crack patching design. In this paper, the reduction of stress intensity factors at the crack-tip and prediction of crack growth direction are determined to evaluate the effects of various non-dimensional design parameter including; composite patch thickness and stiffener distance. The research on cracked structure subjected to mixed mode loading is accomplished and it is evident that more work using different approaches is necessary.

  • PDF

Theoretical tensile model and cracking performance analysis of laminated rubber bearings under tensile loading

  • Chen, Shicai;Wang, Tongya;Yan, Weiming;Zhang, Zhiqian;Kim, Kang-Suk
    • Structural Engineering and Mechanics
    • /
    • v.52 no.1
    • /
    • pp.75-87
    • /
    • 2014
  • To analyze the tension performance of laminated rubber bearings under tensile loading, a theoretical tension model for analyzing the rubber bearings is proposed based on the theory of elasticity. Applying the boundary restraint condition and the assumption of incompressibility of the rubber (Poisson's ratio of the rubber material is about 0.5 according the existing research results), the stress and deformation expressions for the tensile rubber layer are derived. Based on the derived expressions, the stress distribution and deformation pattern especially for the deformation shapers of the free edges of the rubber layer are analyzed and validated with the numerical results, and the theory of cracking energy is applied to analyze the distributions of prediction cracking energy density and gradient direction. The prediction of crack initiation and crack propagation direction of the rubber layers is investigated. The analysis results show that the stress and deformation expressions can be used to simulate the stress distribution and deformation pattern of the rubber layer for laminated rubber bearings in the elastic range, and the crack energy method of predicting failure mechanism are feasible according to the experimental phenomenon.

A Study on Prediction of Fatigue Life using MFC Sensors (MFC센서를 이용한 피로수명예측에 관한 연구)

  • Lee, Ji-Hoon;Oh, Dong-Jin;Kim, Myung-Hyun
    • Journal of Welding and Joining
    • /
    • v.31 no.6
    • /
    • pp.32-36
    • /
    • 2013
  • The large-scale structures have the possibility that there are defects such as cracks due to stress concentration caused by geometric discontinuities in the structure. In this respect, the assessment of fatigue life and the development of structural health monitoring(SHM) are very important. Fatigue design of structure is typically accomplished either using a set of stress cycle (S-N) data obtained from fatigue tests or using the fracture mechanics approach. The stress intensity factor(SIF) is required for the estimation of fatigue crack propagation life from the linear elastic fracture mechanics (LEFM) perspective. In this study, Macro Fiber Composie(MFC) sensor for the measurement of SIF of two dimensional cracks is used. The SIF based on the piezoelectric constitutive law and fracture mechanics are calculated. The measured values of the SIF are later used for the prediction of the crack propagation life. In this study, the measured value of the SIF and the fatigue life are compared with the theoretical results.

Compressive Basic Creep Prediction in Early-Age Concrete (초기재령 콘크리트의 압축 기본크리프 예측)

  • 김성훈;송하원;변근수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.285-288
    • /
    • 1999
  • Creep is a major parameter to represent long-term behavior of concrete structures concerning serviceability and durability. The effect of creep is recently taking account into crack resistance analysis of early-age concrete concerning durability evaluation. Since existing creep prediction models were proposed to predict creep for hardened concrete, most of them cannot consider effectively the information on microstructure formation and hydration developed in the early-age concrete. In this study, creep tests for early-age concrete made of the type I cement and the type V cement are carried out respectively and creep prediction models are evaluated for the prediction of creep behavior in early-age concrete. A creep prediction model is modified for the prediction of creep in early-age concrete and also verified by comparing prediction results with results of creep tests on early-age concrete.

  • PDF