• Title/Summary/Keyword: crack opening ratio

Search Result 122, Processing Time 0.026 seconds

Experimental Study on Fracture Behavior of Low-Heat Concrete, by Three-Point Bent Test (3점 휨시험에의한 저발열콘크리트의 파괴거동에 곤한 실험적 연구)

  • 조병완;박승국
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.199-204
    • /
    • 1998
  • To analysis the failure character of Low-Heat concrete which is used to prevent the thermal crack caused by hydration heat, static loading test was performed by this test method, "Determination of the Fracture Energy of Motar and Concrete by Means of Three-Point Band Tests on Notched Beam" (suggested by RILEM 50-FMC Committe). This study compared and analysised the fracture energy of Mode I (opening mode), the most general pattern in the view of water-cemente ratio(W/C), compressive strength and age of Ordinary Portland Concrete and Low-Heat Concrete under the same mixture. The test results show that the case of Ordinary Portland Concrete and Low-Heat Concrete, low Water-Cemente ratio(W/C) cause the increase of fracture energy, and high failure-strength decrease failure-deflection, and the fracture energy of Low-Heat Concrete is similar to Ordinary Portland Concrete as the age increase. increase.

  • PDF

An Evaluation on Corrosion Fatigue life of Spring Steel by Compressive Residual Stress (압축잔류응력을 부여한 스프링강의 부식피로 수명평가)

  • Park, Keyung-Dong;Ki, Woo-Tae;Sin, Yeong-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • In this study, the influence of compressive residual stress and corrosive condition for corrosion fatigue crack was investigated, after immersing in 3.5%NaCl, $10%HNO_3+3%HF,\;6%FeCl_3$. The immersion period was performed for 90days. The fatigue characterization of a spring steel with processed shot peening were performed by considering the several corrosion environments in the range of stress ratio of 0.05 by means of opening mode displacement. By using the methods mentioned above, the following conclusions have been drawn: The fatigue life shows more improvement in the shot peened material than that in the un peened material. And the fatigue life shows improvement in ambient than in corrosion conditions. Threshold stress intensity factor range of the shot peened materials has higher than of the un peened materials. And the threshold stress intensity factor range was decreased in corrosion environments over ambient.

A Numerical Study of Hydraulic Fractures Propagation with Rock Bridges (Rock bridges를 고려한 수치 해석적 수압파쇄 균열거동 연구)

  • 최성웅
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.201-210
    • /
    • 2000
  • Rock bridge in rock masses can be considered as one of several types of opening-mode fractures, and also it has been known to have a great influence on the stability of structures in rock mats. In the beginning of researching a rock bridge it used to be studied only in characteristics of its behavior, as considering resistance of material itself. However the distribution pattern of rock bridges, which can affect the stability of rock structures, is currently researched with a fracture mechanical approach in numerical studies. For investigating the effect of rock bridges on the development pattern of hydraulic fractures, the author analyzed numerically the stress state transition in rock bridges and their phenomena with a different pattern of the rock bridge distributons. From the numerical studies, a two-crack configuration could be defined to be representative of the most critical conditions for rock bridges, only when cracks are systematic and same in their length and angle. Moreover, coalescence stresses and onset of propagation stresses could be known to increase with decreasing s/L ratio or increasing d/L ratio. The effect of pre-existing crack on hydraulic fracturing was studied also in numerical models. Different to the simple hydraulic fracturing modeling in which the fractures propagated exactly parallel to the maximum remote stress, the hydraulic fractures with pre-existing cracks dial not propagate parallel to the maximum remote stress direction. These are representative of the tendency to change the hydraulic fractures direction because of the existence of pre-existing crack. Therefore s/L, d/L ratios will be identical as a function effective on hydraulic fractures propagation, that is, the $K_{I}$ vague increase with decreasing s/L ratio or increasing d/L ratio and its magnification from onset to propagation increases with decreasing s/L ratio. The scanline is a commonly used method to estimate the fracture distribution on outcrops. The data obtained from the scanline method can be applied to the evaluation of stress field in rock mass.s.

  • PDF

A Numerical Study of Hydraulic Fractures Propagation with Rock Bridges (Rock bridges를 고려한 수치 해석적 수압파쇄 균열거동 연구)

  • 최성웅
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.447-456
    • /
    • 2000
  • Rock bridge in rock masses can be considered as one of several types of opening-mode fractures, and also it has been known to have a great influence on the stability of structures in rock mass. In the beginning of researching a rock bridge it used to be studied only in characteristics of its behavior, as considering resistance of material itself. However the distribution pattern of rock bridges, which can affect the stability of rock structures, is currently researched with a fracture mechanical approach in numerical studies. For investigating the effect of rock bridges on the development pattern of hydraulic fractures, the author analyzed numerically the stress state transition in rock bridges and their phenomena with a different pattern of the rock bridge distributions. From the numerical studies, a two-crack configuration could be defined to be representative of the most critical conditions for rock bridges, only when cracks are systematic and same in their length and angle. Moreover, coalescence stresses and onset of propagation stresses could be known to increase with decreasing s/L ratio or increasing d/L ratio. The effect of pre-existing crack on hydraulic fracturing was studied also in numerical models. Different to the simple hydraulic fracturing modeling in which the fractures propagated exactly parallel to the maximum remote stress, the hydraulic fractures with pre-existing cracks did not propagate parallel to the maximum remote stress direction. These are representative of the tendency to change the hydraulic fractures direction because of the existence of pre-existing crack. Therefore s/L, d/L ratios will be identical as a function effective on hydraulic fractures propagation, that is, the K$_1$ value increase with decreasing s/L ratio or increasing d/L ratio and its magnification from onset to propagation increases with decreasing s/L ratio. The scanline is a commonly used method to estimate the fracture distribution on outcrops. The data obtained from the scanline method can be applied to the evaluation of stress field in rock mass.

  • PDF

A Study of Shot Peened Spring Steel(SUP9) for Fatigue Life Improvement and Compressive Residual Stress Disappearance on the High Temperature (SUP9 스프링강의 숏피닝가공에 의한 피로수명향상과 고온환경에서의 압축잔류응력 소멸현상에 관한 연구)

  • Park, Kyoung-Dong;Son, Myoung-Koon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.1
    • /
    • pp.22-31
    • /
    • 2003
  • The compressive residual stress, which is induced by shot peening process, seems to be an Important factor in increasing the fatigue strength. And then it was showed that residual stress was disappearenced at the high temperature. The fatigue charateristic investigation of a SUP9 spring steel processed shot peening is performed by considering the high temperature service conditions in the range of room temperature through $180^{\circ}C$ in the range of stress ratio of 0.3 by means of opening mode displacement. The fatigue resistance characteristics and fracture strength at high temperature is considerable lower than that of room temperature in the early stage and stable of fatigue crack growth region.

  • PDF

Safety Assessment of Cracked Prestressed concrete Cylinder Pipes (균열손상을 입은 프리스트레스트 콘크리트관의 안전도분석)

  • Kim, Young Jin;Lee, Sang Min;Lee, Ki Seong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.2 no.3
    • /
    • pp.168-175
    • /
    • 1998
  • This study investigated the structural performance of the precast prestressed cylinder pipe having cracked under construction. The finite element formulation of PPC pipe incorporates Asoild elements using SAP90 program and the radial prestress force was transformed into the eqivalent external pressure. The analytical results were compared with the experimental results of full scale tests on PPC pipes subjected to static load. It is shown that the proposed modelling gives a realistic represention of the actual behavior. The analytical procedure is used to calculate the stresses in the PPC pipes and to check the crack opening under various situations such as bedding angle, earth pressure, and earth cover. Finally, the proposed modelling and analytical procedure should be especially usefull for the safety assessment of the PPC pipes under general loading conditions.

  • PDF

A Study of Shot peened Spring Steel for Fatigue Life Improvement and Compressive Residual Stress Disappearance on the High Temperature (SUP9 스프링강의 쇼트피닝가공에 의한 피로수명향상과 고온환경에서의 압축잔류응력 소멸현상에 관한 연구)

  • Park, Keyoung-Dong;Son, Myung-Koon
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.347-353
    • /
    • 2002
  • The compressive residual stress, which is induced by shot peening process, seems to be an important factor of increasing the fatigue strength. And then it was showed that residual stress was disappearenced at the high temperature. The fatigue characteristic study of a SUP9 spring steel processed shot peening is performed by considering the high temperature service conditions in the range of room temperature through $180^{\circ}C$ in the range of stress ratio of 0.3 by means of opening mode displacement. The fatigue resistance characteristics and fracture strength at high temperature is considerable lower than that of room temperature in the early stage and stable of fatigue crack growth region.

  • PDF

Efforts of Specimen Sizes on Crack Opening Displacement (COD) for Submerged Arc Weldments of Fine Grained Steel (미세립강 잠호 용접부의 COD에 미치는 시편 크기의 영향)

  • 윤중근;김대훈;김문일
    • Journal of Welding and Joining
    • /
    • v.1 no.2
    • /
    • pp.53-60
    • /
    • 1983
  • COD test based on fracture mechanics concept was used in this study to evaluate the fracture toughness quantitatively. Effects of specimen sizes on critical COD value for ABS EH 36 steel and its submerged arc weldments, and the variation of critical COD value depending on metallurgical/mechanical heterogeneities caused by weld thermal cycles were investigated. Experiment was performed by using specimens made from base metal and submerged arc weldments according to BS 5762. Obtained results are summarized as follows; 1) Critical COD value for base metal decreases with increasing thickness of specimen. On hand, as the reduction ratio of critical COD decreases with increasing specimen thickness, critical COD value becomes constant above a thickness of specimen. 2) Critical COD value for weldment decreases with increasing thickness of specimen and was also affected by metallurgical states of base metal. 3) Size effects for weldment was greater at the hardened region. 4) Critical COD value was affected by microstructural change due to weld thermal cycles in weldments; that is, accicular ferrite formation is favorable for increasing of COD value.

  • PDF

An Experimental Study on the Fracture Energy of Steel Fiber Reinforced Concrete Structures by the Effects of Fiber Contents (강섬유 혼입량에 의한 강섬유보강콘크리트의 파괴에너지에 관한 실험적 연구)

  • 장동일;채원규;정원우;손영환
    • Magazine of the Korea Concrete Institute
    • /
    • v.3 no.4
    • /
    • pp.79-88
    • /
    • 1991
  • In this study, fracture tests were carried out in order to investigate the fracture behavior of SFRC(Steel Fiber Peinforced Concrete) with initial cracks. The relationships between loading. strain, mld-span deflections and CMOD(Crack Mouth Opening Displacement) of the beams were observed under the three point loading system. The effect of the fiber content and the initial crack ratio on the concrete fracture behavior were studied and the fracture toughness, the critical energy release ratio and the fracture energy were also calcul ated from the test results. From the test results, it was known that when the fiber contents are between 0.5% and 1.0%, and 1.5% the average fracture energy of SFRC specimens is about 7~10 times. and about 15 times better than that of the plam concrete specimens respectively.ively.

Seismic behavior of stiffened concrete-filled double-skin tubular columns

  • Shekastehband, B.;Mohammadbagheri, S.;Taromi, A.
    • Steel and Composite Structures
    • /
    • v.27 no.5
    • /
    • pp.577-598
    • /
    • 2018
  • The imperfect steel-concrete interface bonding is an important deficiency of the concrete-filled double skin tubular (CFDST) columns that led to separating concrete and steel surfaces under lateral loads and triggering buckling failure of the columns. To improve this issue, it is proposed in this study to use longitudinal and transverse steel stiffeners in CFDST columns. CFDST columns with different patterns of stiffeners embedded in the interior or exterior surfaces of the inner or outer tubes were analyzed under constant axial force and reversed cyclic loading. In the finite element modeling, the confinement effects of both inner and outer tubes on the compressive strength of concrete as well as the effect of discrete crack for concrete fracture were incorporated which give a realistic prediction of the seismic behavior of CFDST columns. Lateral strength, stiffness, ductility and energy absorption are evaluated based on the hysteresis loops. The results indicated that the stiffeners had determinant role on improving pinching behavior resulting from the outer tube's local buckling and opening/closing of the major tensile crack of concrete. The lateral strength, initial stiffness and energy absorption capacity of longitudinally stiffened columns with fixed-free end condition were increased by as much as 17%, 20% and 70%, respectively. The energy dissipation was accentuated up to 107% for fixed-guided end condition. The use of transverse stiffeners at the base of columns increased energy dissipation up to 35%. Axial load ratio, hollow ratio and concrete strength affecting the initial stiffness and lateral strength, had negligible effect of the energy dissipation of the columns. It was also found that the longitudinal stiffeners and transverse stiffeners have, respectively, negative and positive effects on ductility of CFDST columns. The conclusions, drawn from this study, can in turn, lead to the suggestion of some guidelines for the design of CFDST columns.