• 제목/요약/키워드: crack generation

검색결과 237건 처리시간 0.029초

균열을 포함한 계의 mesh 자동분할에 관한 연구 (A Study of Mesh Automatic Generating Method for Cracked Body)

  • Park, S.O.
    • 한국정밀공학회지
    • /
    • 제12권2호
    • /
    • pp.162-172
    • /
    • 1995
  • In this paper new mesh generation method is proposed for crack propagation analysis based on the finite element method. The main tool of the method is the Delaunay Triangulation, Transfinete element mapping, and it allows the setting of the arbitrary crack-growth increment and the arbitrary crack direction. It has the form of a subroutine, and it is easily introduced as a subroutine for any mesh generation method which is based on the blocking method.

  • PDF

결함발생 시점을 고려한 CANDU 압력관 결함의 확률론적 건전성평가 (Probabilistic Integrity Assessment of CANDU Pressure Tube for the Consideration of Flaw Generation Time)

  • 곽상록;이준성;김영진;박윤원
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.155-160
    • /
    • 2001
  • This paper describes a probabilistic fracture mechanics (PFM) analysis based on Monte Carlo (MC) simulation. In the analysis of CANDU pressure tube, it is necessary to perform the PFM analyses based on statistical consideration of flaw generation time. A depth and an aspect ratio of initial semi-elliptical surface crack, a fracture toughness value, delayed hydride cracking (DHC) velocity, and flaw generation time are assumed to be probabilistic variables. In all the analyses, degradation of fracture toughness due to neutron irradiation is considered. Also, the failure criteria considered are plastic collapse, unstable fracture and crack penetration. For the crack growth by DHC, the failure probability was evaluated in due consideration of flaw generation time.

  • PDF

결함해석에 기초한 배관용접부 수명평가 (Flaw Analysis Based Life Assessment of Welded Tubular Joint)

  • 이형일;한태수;정재헌
    • 대한기계학회논문집A
    • /
    • 제24권5호
    • /
    • pp.1331-1342
    • /
    • 2000
  • In power generation systems a variety of structural components typically operate at high temperature and pressure. Therefore a life assessment methodology accounting for gradual creep fracture is increasingly needed for these components. The most critical defects in such structure are generally found in the form of semi-elliptical surface cracks in the welded tubular joints. Therefore the analysis of a semi-elliptical surface crack in a plate or a shell is an important problem in engineering fracture mechanics. On this background, via shell/line-spring finite element analyses of such surface cracks in the welded T and L joints under various loadings, we investigate J-integral along the crack front We first develop T and L joints auto mesh generation program providing ABAQUS input file composed of shell/line-spring finite elements. We then further develop a T and L joints life assessment program based on the experimental creep crack growth law and auto mesh generation program in a graphical user interface format Finally the remaining life of T and L joints for various analytical parameters are assessed using the developed life assessment program.

초음파-적외선 열화상 기법에 의한 피로균열 검출에 있어 발열 메커니즘 분석 (Analysis of Heat Generation Mechanism in Ultrasound Infrared Thermography)

  • 최만용;이승석;박정학;김원태;강기수
    • 비파괴검사학회지
    • /
    • 제29권1호
    • /
    • pp.10-14
    • /
    • 2009
  • 초음파 적외선 비파괴 열화상 검사기술의 발열 메커니즘은 정확히 규명되지 않았으나, 열-기계 연성효과와 결함 계면 사이의 마찰효과가 주요한 원인인 것으로 추정되고 있다. 본 논문에서는 피로균열을 갖는 알루미늄 합금 시험편에서 결함을 검출하고, 실험조건으로부터 각각의 메커니즘에 따라 온도 변화를 수치 예측하였다. 시험결과와 수치예측 결과로부터 발열의 주요한 원인이 마찰이라는 것을 밝혔다.

주철의 피로전파거동에 미치는 미세조직의 영향 (The Effects of the Microstructures on the Fatigue Crack Propagation Behaviors of Cast Irons)

  • 김석원;박진성;이형철;김동건;우기도
    • 한국주조공학회지
    • /
    • 제25권1호
    • /
    • pp.16-22
    • /
    • 2005
  • This study aims to investigate the effects of the microstructures and nodule type on the fatigue characteristics of cast iron. Fatigue tests were carried out in tension-tension mode using a servo-hydraulic testing machine with load control mode operating at a frequency of 15 Hz. The tests were conducted at stress ratio R=Kmin/Kmax, of 0.1. Initial crack ${\Dalta}K$ values were highly performed with increase in tensile strength of DCI fatigue specimens. ${\Dalta}K_{th}$ region, fatigue crack propagation was primarily advanced through cell boundary and in periphery of near nodule. Fatigue crack propagation rate of D2 consisted with 2Phase(Ferrite+Pearlite) was slow due to crack closure enhanced by crack deflection and occurred crack branching. The generation of crack branch was occurred due to interaction of crack-nodule. At Threshold and Paris zone, the fractographs of the fatigue fracture surface for DCI show typical striations of a ductile fracture and isolated cleavage planes near graphite. The effect of microstructure on fatigue crack propagation of GC strongly depends on the type of flake. The generation of crack branch occurred due to interaction of crack-nodule. The fractographs of the fatigue fracture surface for GC show cleavage plane along the flake graphite.

취성재료의 충격파괴에 관한 연구 II (A Study on the Impact Fracture of Fragile Materials)

  • 양인영;김택현;정낙규;이상호;김선규
    • 대한기계학회논문집
    • /
    • 제14권6호
    • /
    • pp.1417-1425
    • /
    • 1990
  • 본 연구에서는 취성재료인 유리판이 충격을 받을 때 생기는 크랙패턴 특히, 콘 크랙의 발생 현상을 이론적으로 규명하여 취성재료의 충격파괴방지에 도움이 되게 하고져 하였으며, 판두께방향의 변형을 고려한 제1보에서의 삼차원 동탄성이론에 의한 응력해석방법을 이용하여 충돌점 및 충돌점근방에서의 변형율분포를 해석하였다. 또 한 고속 및 자유낙하 충격시험을 행하여 얻은 크랙의 패턴과 본 이론해석 결과인 변형 률 분포의 수치계산 결과와 비교함으로써 콘 크랙의 발생현상을 3차원 동탄성이론을 이용한 본 충격응력해석 방법에 의한 규명하였다. 변형률 분포의 해석은 국부변형을 고려한 Hertz의 접촉이론과 Lagrange의 고전판 이론을 이용하여 구한 충격하중계수의 크기에 따라 충격하중의 함수근사식을 바꿔가며 해석하였으며 충돌점으로 부터 0.1cm 간격으로 5cm범위까지를 해석하였다.

연성파괴에 기반한 다단 디프드로잉 및 아이어닝 공정에 의한 알루미늄 라이너 개발 (Development of an Aluminum Liner using Multi-drawing and Ironing Processes based on the Ductile Fracture Criterion)

  • 윤여웅;강성훈;윤춘기;이정환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.403-407
    • /
    • 2009
  • In this work, finite element investigations were carried out to manufacture a seamless aluminum liner without crack generation using four-stage deep drawing followed by two-stage ironing process. In order to predict the crack generation during the liner manufacturing process, the Normalize Cockroft-Latham(NCL) which is one of ductile fracture criteria was adopted. In addition, the tensile tests were carried out to obtain the critical value of NCL by comparing the experimental and FE simulation results. From this, various case studies based on FE simulation were carried to obtain the optimum die designs which can prevent the crack generation during ironing processes. Finally, the aluminum liner was successfully made using obtained die designs so that requirements were met in terms of thickness and height of the liner.

  • PDF

대구경-후판 압력용기용 저 합금강(Mn-Mo)의 용접특성 (A Welding Characteristics of Large Caliber-Thick Plate Pressure Vessel Low Alloy Steel (Mn-Mo))

  • 안종석;박진근;윤재연
    • Journal of Welding and Joining
    • /
    • 제30권6호
    • /
    • pp.10-14
    • /
    • 2012
  • Recently the low alloy steel plate made with manganese-molybdenum is used widely in steam drum and separator of the new coal-fired power plant boiler. This material is suitable for the vapor storage of high pressure and high temperature. The high temperature creep strength of Mn-Mo alloy is higher than the carbon plate(SA516) that used in the subcritical pressure boiler. It reduces the thickness of the pressure vessel and makes the lightweight possible. Recently in the power plant boiler operation and production process, the damage has happened frequently in the heat affected zone and base material according to the hydrogen crack and delayed crack. This paper describes the research result about the damage case experienced in the boiler steam drum production process and present the optimum manufacture method for the similar damage prevention of recurrence.

A new approach for finite element analysis of delaminated composite beam, allowing for fast and simple change of geometric characteristics of the delaminated area

  • Perel, Victor Y.
    • Structural Engineering and Mechanics
    • /
    • 제25권5호
    • /
    • pp.501-518
    • /
    • 2007
  • In this work, a new approach is developed for dynamic analysis of a composite beam with an interply crack, based on finite element solution of partial differential equations with the use of the COMSOL Multiphysics package, allowing for fast and simple change of geometric characteristics of the delaminated area. The use of COMSOL Multiphysics package facilitates automatic mesh generation, which is needed if the problem has to be solved many times with different crack lengths. In the model, a physically impossible interpenetration of the crack faces is prevented by imposing a special constraint, leading to taking account of a force of contact interaction of the crack faces and to nonlinearity of the formulated boundary value problem. The model is based on the first order shear deformation theory, i.e., the longitudinal displacement is assumed to vary linearly through the beam's thickness. The shear deformation and rotary inertia terms are included into the formulation, to achieve better accuracy. Nonlinear partial differential equations of motion with boundary conditions are developed and written in the format acceptable by the COMSOL Multiphysics package. An example problem of a clamped-free beam with a piezoelectric actuator is considered, and its finite element solution is obtained. A noticeable difference of forced vibrations of the delaminated and undelaminated beams due to the contact interaction of the crack's faces is predicted by the developed model.

Crack detection in rectangular plate by electromechanical impedance method: modeling and experiment

  • Rajabi, Mehdi;Shamshirsaz, Mahnaz;Naraghi, Mahyar
    • Smart Structures and Systems
    • /
    • 제19권4호
    • /
    • pp.361-369
    • /
    • 2017
  • Electromechanical impedance method as an efficient tool in Structural Health Monitoring (SHM) utilizes the electromechanical impedance of piezoelectric materials which is directly related to the mechanical impedance of the host structure and will be affected by damages. In this paper, electromechanical impedance of piezoelectric patches attached to simply support rectangular plate is determined theoretically and experimentally in order to detect damage. A pairs of piezoelectric wafer active sensor (PWAS) patches are used on top and bottom of an aluminum plate to generate pure bending. The analytical model and experiments are carried out both for undamaged and damaged plates. To validate theoretical models, the electromechanical impedances of PWAS for undamaged and damaged plate using theoretical models are compared with those obtained experimentally. Both theoretical and experimental results demonstrate that by crack generation and intensifying this crack, natural frequency of structure decreases. Finally, in order to evaluate damage severity, damage metrics such as Root Mean Square Deviation (RMSD), Mean Absolute Percentage Deviation (MAPD), and Correlation Coefficient Deviation (CCD) are used based on experimental results. The results show that generation of crack and crack depth increasing can be detectable by CCD.