• Title/Summary/Keyword: crack density analysis

Search Result 135, Processing Time 0.022 seconds

Development of Automated J-Integral Analysis System for 3D Cracks (3차원 J적분 계산을 위한 자동 해석 시스템 개발)

  • 이준성
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.74-79
    • /
    • 2000
  • Integrating a 3D solid modeler with a general purpose FEM code, an automatic nonlinear analysis system of the 3D crack problems has been developed. A geometry model, i.e. a solid containing one or several 3D cracks is defined. Several distributions of local node density are chosen, and then automatically superposed on one another over the geometry model by using the fuzzy knowledge processing. Nodes are generated by the bucketing method, and ten-noded quadratic tetrahedral solid elements are generated by the Delaunay triangulation techniques. The complete finite element(FE) model generated, and a stress analysis is performed. In this system, burden to analysts fur introducing 3D cracks to the FE model as well as fur estimating their fracture mechanics parameters can be dramatically reduced. This paper describes the methodologies to realize such functions, and demonstrates the validity of the present system.

  • PDF

Microscopic Analysis of the Rock Cleavage for Jurassic Granite in Korea (주라기 화강암에 발달하는 결의 현미경학적 분석)

  • 박덕원;서용석;정교철;김영기
    • The Journal of Engineering Geology
    • /
    • v.11 no.1
    • /
    • pp.51-62
    • /
    • 2001
  • Jurassic granites of three sites, Pocheon, Geochang and Habcheon, were analysed with respect to the characteristics of the rock cleavage. Microscopic analysis for the oriented thin sections of the specimens was conducted by using the scanline survey technique to measure microcrack direction, spacing and length. The results showed that the preferred orientations of microcrack developed in quartz and feldspar arc coincident with the orientation of quarry planes. The length of microcrack is related to grain size. The length of microcrack in coarse-grained granite is longer than that in relatively fine-grained granite. In all granites, microcracks related to the preferred orientations are well developed in order of rift, grain and hardway planes in number, length and density.

  • PDF

Development of a CAE Tool for P/M Compaction Process and Its Application (금형압축성형공정 해석용 CAE 프로그램 개발 및 적용)

  • Chung Suk-Hwan;Kwon Young-Sam
    • Journal of Powder Materials
    • /
    • v.11 no.5
    • /
    • pp.399-411
    • /
    • 2004
  • Crack generation during die compaction and distortion during sintering have been critical problems for the conventional pressing and sintering process. Until now, trial and error approach with engineers' industrial experiences has been only solution to protect the crack generation and distortion. However, with complexity in shape and process it is very difficult to design process conditions without CAE analysis. We developed the exclusive CAE software (PMsolver/Compaction) for die compaction process. The accuracy of PMsolver is verified by comparing the finite element simulation results with experimental results. The simplified procedures to find material properties are proposed and verified with iron based powder and tungsten carbide powder. Based on the accurate simulation result by PMsolver, the optimal process conditions are designed to get uniform density distribution in a powder compact after die compaction process by using a derivative based optimization scheme. In addition, the effect of non-uniform density distribution in a powder compact on distortion during sintering is shown in case of the fabrication of tungsten carbide insert.

Analysis of Three-Dimensional Cracks in Inhomogeneous Materials Using Fuzzy Theory

  • Lee, Yang-Chang;Lee, Joon-Seong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.2
    • /
    • pp.119-123
    • /
    • 2005
  • This paper describes a fuzzy-based system for analyzing the stress intensity factors (SIFs) of three-dimensional (3D) cracks. 3D finite element method(FEM) was used to obtain the SIF for subsurface cracks and surface cracks existing in inhomogeneous materials. A geometry model, i.e. a solid containing one or several 3D cracks is defined. Several distributions of local node density are chosen, and then automatically superposed on one another over the geometry model by using the fuzzy theory. Nodes are generated by the bucketing method, and ten-noded quadratic tetrahedral solid elements are generated by the Delaunay triangulation techniques. The singular elements such that the mid-point nodes near crack front are shifted at the quarter-points, and these are automatically placed along the 3D crack front. The complete FE model is generated, and a stress analysis is performed. The SIFs are calculated using the displacement extrapolation method. The results were compared with those surface cracks in homogeneous materials. Also, this system is applied to analyze cladding effect of surface cracks in inhomogeneous materials.

Fracture Behavior of Rail Steel under Mixed Mode Loading (혼합모드하에서의 레일강의 파괴거동)

  • Chang, Dong Il;Kim, Sung Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.761-769
    • /
    • 1994
  • Actual load acting on rail surface in the track is the combined mode loading due to the contact rolling load of the wheels. To investigate the fracture behavior on rail steel under combined modes I and II, fracture tests were performed by using the test jigs and fracture specimen which were designed by Richard. The analysis results of experimental fracture data were compared with various fracture criteria that have been introduced for determination of the crack propagation direction and the critical stress of fracture of a crack submitted to a mixed mode loading. From the results, it was shown that the actual crack propagation direction of rail steel agree with the crack propagation directions predicted by maximum tangential stress criterion and strain energy density criterion, and that fracture criterion follows principal strain criterion.

  • PDF

Mechanical Properties and Microstructure of AlN/W Composites (AlN/W계 복합재료의 기계적 특성과 미세구조)

  • 윤영훈;최성철;박철원
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.1
    • /
    • pp.83-91
    • /
    • 1996
  • Monolithic AlN and AlN-W composites were fabricated by pressure-less sintering at 190$0^{\circ}C$ under nitrogen atmosphere and the influences of tungsten phase on the microstructure and mechanical properties were investi-gated. In the fabrication of sintered specimen no additive was used. And monolithic AlN showed substantial grain growth and low relative density. AlN-W composites were fully densified and grain growths of matrix were inhibited. The densification behavior of composites were inferred to be achieved through the liquid phase sintering process such as particle-rearrangement and solutino-reprecipitation. Also the oxid phases which is expected to form liquid phases duringsintering process were detected by XRD analysis. As the tungsten volume content increases fracture strength was decreased and fracture toughness was increased. It was suppo-sed that the strength decrease of composites with tungsten content was due to existence of interface phases. The subcritical crack growth behavior was observed from the stress-strain curve of composites. The effect of the secondary phase and interface phases on toughness in crease were studied through observation of crack propagation path and the influence of residual stress on crack propagation was investigated by X-ray residual stress measurement. In the result of residual stress measurement the compressive stress of matrix in composi-test was increased with tungsten volume content and the compressive stress distribution of matrix must have contributed to the inhibition of crack propagation.

  • PDF

Theoretical tensile model and cracking performance analysis of laminated rubber bearings under tensile loading

  • Chen, Shicai;Wang, Tongya;Yan, Weiming;Zhang, Zhiqian;Kim, Kang-Suk
    • Structural Engineering and Mechanics
    • /
    • v.52 no.1
    • /
    • pp.75-87
    • /
    • 2014
  • To analyze the tension performance of laminated rubber bearings under tensile loading, a theoretical tension model for analyzing the rubber bearings is proposed based on the theory of elasticity. Applying the boundary restraint condition and the assumption of incompressibility of the rubber (Poisson's ratio of the rubber material is about 0.5 according the existing research results), the stress and deformation expressions for the tensile rubber layer are derived. Based on the derived expressions, the stress distribution and deformation pattern especially for the deformation shapers of the free edges of the rubber layer are analyzed and validated with the numerical results, and the theory of cracking energy is applied to analyze the distributions of prediction cracking energy density and gradient direction. The prediction of crack initiation and crack propagation direction of the rubber layers is investigated. The analysis results show that the stress and deformation expressions can be used to simulate the stress distribution and deformation pattern of the rubber layer for laminated rubber bearings in the elastic range, and the crack energy method of predicting failure mechanism are feasible according to the experimental phenomenon.

Damage Detection and Suppression in Composites Using Smart Technologies

  • Takeda, Nobuo
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.26-36
    • /
    • 2001
  • Smart sensors and actuators have recently been developed. In this study, first, small-diameter fiber Bragg grating (FBG) sensors developed by the author, whose cladding and polyimide coating diameters were 40 and $52{\mu}m$, respectively, were embedded inside a laminate without resin-rich regions around sensors and the deterioration of mechanical properties of the composite laminate. The small-diameter FBG sensor was embedded in $0^{\circ}$ ply of a CFRP laminate for the detection of transverse cracks in $90^{\circ}$ ply of the laminate. The reflection spectra from the FBG sensor were measured at various tensile stresses. The spectrum became broad and had some peaks with an increase of the transverse crack density. Furthermore, the theoretical calculation reproduced the change in the spectrum very well. These results show that the small-diameter FBG sensors have a potential to detect the occurrence of transverse cracks through the change in the form of the spectrum, and to evaluate the transverse crack density quantitatively by the spectrum width. On the other hand, shape memory alloy (SMA) films were used to suppress the initiation and growth of transverse cracks in CFRP laminates. Pre-strained SMA films were embedded between laminas in CFRP laminates and then heated to introduce the recovery stress in SMA films and compressive stresses in the weakest plies ($90^{\circ}$ ply). The effects of recovery stresses are demonstrated in the experiments and well predicted using the shear-lag analysis and the nonlinear constitutive equation of SMA films.

  • PDF

Experimental Research of Change in Magnetic Flux Density Due to Load for Measuring KI (응력확대계수측정을 위한 하중에 의한 자속밀도변화의 실험적 연구)

  • Lee, Jeong-Hee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.1
    • /
    • pp.129-132
    • /
    • 2004
  • In order to determine the effective way of measuring the Mode I stress intensity factor, $K_I$, by means of the alternating current potential drop(ACPD) technique for a material containing a two-dimensional surface crack, the change in magnetic flux density above the cracked specimen surface was studied experimentally. The change in magnetic flux in the air above the cracked specimen made of aluminum alloy is measured by changing the load by four-point bending. The magnetic flux in the air is almost not changed by increasing the load in teh specimen. The change in potential drop due to load is not caused by the change in electro-motive force induced in the coiled measuring system. This experimental result agree to the result of theoretical analysis in reference 7).

  • PDF

Reliability evaluation of brittle structures under thermal shocks (열충격이 작용하는 취성구조의 신뢰성 평가)

  • 이치우;장건익;김종태
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.58-64
    • /
    • 1998
  • An analysis method for the reliability of ceramic structures subjected to thermal shocks is presented. Flaws with the size of given probability distribution function are assumed to be distributed at random with a certain density per unit volume in the structures. Criterions for crack instability are derived for brittle solids under general thermal stresses. A probabilistic failure model is presented to study the probability of crack instability for brittle solids containing cracks with uncertain size. The reliabilities of brittle structures are evaluated based on the weakest-link hypothesis, which states that a structure fails when the cracks in any differential volume become unstable. A numerical example is given to demonstrate the application of the proposed method.

  • PDF