• Title/Summary/Keyword: crack analysis technique

Search Result 310, Processing Time 0.019 seconds

Development of Image Processing for Concrete Surface Cracks by Employing Enhanced Binarization and Shape Analysis Technique (개선된 이진화와 형상분석 기법을 응용한 콘크리트 표면 균열의 화상처리 알고리즘 개발)

  • Lee Bang-Yeon;Kim Yun-Yong;Kim Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.361-368
    • /
    • 2005
  • This study proposes an algorithm for detection and analysis of cracks in digital image of concrete surface to automate the measurement process of crack characteristics such as width, length, and orientation based on image processing technique. The special features of algorithm are as follows: (1) application of morphology technique for shading correction, (2) improvement of detection performance based on enhanced binarization and shape analysis, (3) suggestion of calculation algorithms for width, length, and orientation. A MATLAB code was developed for the proposed algorithm, and then test was performed on crack images taken with digital camera to examine validity of the algorithm. Within the limited test in the present study, the proposed algorithm was revealed as accurately detecting and analyzing the cracks when compared to results obtained by a human and classical method.

J-integral calculation by domain integral technique using adaptive finite element method

  • Phongthanapanich, Sutthisak;Potjananapasiri, Kobsak;Dechaumphai, Pramote
    • Structural Engineering and Mechanics
    • /
    • v.28 no.4
    • /
    • pp.461-477
    • /
    • 2008
  • An adaptive finite element method for analyzing two-dimensional and axisymmetric nonlinear elastic fracture mechanics problems with cracks is presented. The J-integral is used as a parameter to characterize the severity of stresses and deformation near crack tips. The domain integral technique, for which all relevant quantities are integrated over any arbitrary element areas around the crack tips, is utilized as the J-integral solution scheme with 9-node degenerated crack tip elements. The solution accuracy is further improved by incorporating an error estimation procedure onto a remeshing algorithm with a solution mapping scheme to resume the analysis at a particular load level after the adaptive remeshing technique has been applied. Several benchmark problems are analyzed to evaluate the efficiency of the combined domain integral technique and the adaptive finite element method.

A Study on the Delamination Growth in Composite Laminates Subjected to Low-Velocity Impact (저속 충격을 받는 복합 재료 적층판의 층간 분리 성장에 관한 연구)

  • 장창두;송하철;김호경;허기선;정종진
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.6
    • /
    • pp.55-59
    • /
    • 2002
  • Delamination means that cracking occurs on the interface layer between composite laminates. In this paper, to predict the delamination growth in composite laminates subjected to low-velocity impact, the unit load method was introduced, and an eighteen-node 3-D finite element analysis, based on assumed strain mixed formulation, was conducted. Strain energy release rate, necessary to determine the delamination growth, was calculated by using the virtual crack closure technique. The unit load method saves the computation time more than the re-meshing method. The virtual crack closure technique enables the strain energy release rate to be easily calculated, because information of the singular stress field near the crack tip is not required. Hence, the delamination growth in composite laminates that are subjected to low-velocity impact can be efficiently predicted using the above-mentioned methods.

Adaptive finite elements by Delaunay triangulation for fracture analysis of cracks

  • Dechaumphai, Pramote;Phongthanapanich, Sutthisak;Bhandhubanyong, Paritud
    • Structural Engineering and Mechanics
    • /
    • v.15 no.5
    • /
    • pp.563-578
    • /
    • 2003
  • Delaunay triangulation is combined with an adaptive finite element method for analysis of two-dimensional crack propagation problems. The content includes detailed descriptions of the proposed procedure which consists of the Delaunay triangulation algorithm and an adaptive remeshing technique. The adaptive remeshing technique generates small elements around the crack tips and large elements in the other regions. Three examples for predicting the stress intensity factors of a center cracked plate, a compact tension specimen, a single edge cracked plate under mixed-mode loading, and an example for simulating crack growth behavior in a single edge cracked plate with holes, are used to evaluate the effectiveness of the procedure. These examples demonstrate that the proposed procedure can improve solution accuracy as well as reduce total number of unknowns and computational time.

A Study on Analysis Method to Evaluate Influence of Damage on Composite Layer in Type3 Composite Cylinder (Type3 복합재료 압력용기의 복합재층 손상에 따른 영향성 평가를 위한 해석기법에 관한 연구)

  • Lee, Kyo-Min;Park, Ji-Sang;Lee, Hak-Gu;Kim, Yeong-Seop
    • Composites Research
    • /
    • v.23 no.6
    • /
    • pp.7-13
    • /
    • 2010
  • Type3 cylinder is a composite pressure vessel fully over-wrapped with carbon/epoxy composite layers over an aluminum liner, which is the most ideal and safe high pressure gas container for CNG vehicles due to the lightweight and the leakage-before-burst characteristics. During service in CNG vehicle, if a fiber cut damage occurs in outer composite layers, it can degrade structural performance, reducing cycling life from the original design life. In this study, finite element modeling and analysis technique for the composite cylinder with fiber-cut crack damage is presented. Because FE analysis of type3 cylinder is path dependant due to plastic deformation of aluminum liner in autofrettage process, method to introduce a crack into FE model affect analysis result. A crack should be introduced after autofrettage in analysis step considering real circumstances where crack occurs during usage in service. For realistic simulation of this situation, FE modeling and analysis technique introducing a crack in the middle of analysis step is presented and the results are compared with usual FE analysis which has initial crack in the model from the beginning of analysis. Proposed analysis technique can be used effectively in the evaluation of influence of damage on composite layers of type3 cylinder and establish inspection criteria of composite cylinder in service.

A Photoelastic Study on the Stress Intensity Factor of Circular Disk with an Are-crack (광탄성법에 의한 원고형상크랙을 갖는 원판의 응력확대계수에 관한 연구)

  • Lee, Chi-Woo;Kim, Tae-Gyu;Yang, Jang-Hong;O, Se-Uk
    • Journal of Ocean Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.96-103
    • /
    • 1988
  • The stress distribution in the vicinity of the crack tip in the fracture mechanics is ordenarily indicated by the stress intensity factor. In the analysis of stress intensity factors, there are many theoretical and experimental methods. The stress analysis in photoelastic technique is usually made by using the difference of the principal stress of isochromatic fringe patterns. In this paper, the teflon molding technique is adopted to make a test specimen with a circular arc-crack, and that upgraded the accuracy of experiment. As the result, the experimental values of the stress intensity factors for the circular disk with a straight crack are coincided with the theoretical values. But, there is quite a difference between this expermental results on the finite plate for circular arc-crack and its theoretical values on the infinite one. Therefore, a boundary condition with regard to the loading condition on finite disk must be considered.

  • PDF

Combination of isogeometric analysis and extended finite element in linear crack analysis

  • Shojaee, S.;Ghelichi, M.;Izadpanah, E.
    • Structural Engineering and Mechanics
    • /
    • v.48 no.1
    • /
    • pp.125-150
    • /
    • 2013
  • This paper intends to present an application of isogeometric analysis in crack problems. An isogeometric formula is developed based on NURBS basis functions - enriched and adopted via X-FEM enrichment functions. The proposed method which is represented by the combination of the two above-mentioned methods, first by using NURBS functions models the geometry exactly and then by defining level set function on domain, identifies available discontinuity in elements. Additional DOFs are allocated to elements containing the crack and X-FEM enrichment functions enrich approximate solution. Moreover, a subelement refinement technique is used to improve the accuracy of integration by the Gauss quadrature rule. Finally, several numerical examples are illustrated to demonstrate the effectiveness, robustness and accuracy of the proposed method during calculation of crack parameters.

Strength and Crack Growth Computation for Various types of Stringers for Stiffened Panels using XFEM Techniques

  • Krishna, Lok S;Reshma, G;Dattaguru, B
    • International Journal of Aerospace System Engineering
    • /
    • v.7 no.1
    • /
    • pp.7-15
    • /
    • 2020
  • In this paper the crack growth, modeling, and simulation of the stiffened and un-stiffened cracked panels presented using commercially available finite element software packages. Computation of stresses and convergence of stress intensity factor for single edge notch (SEN) specimens carried out using the finite element method (FEM) and extended finite element method (XFEM) and compared with an analytical solution. XFEM techniques like cohesive segment method and LEFM using virtual crack closure technique (VCCT), used for crack growth analysis and presented results for un-stiffened and stiffened panels considering various crack domain. The non-linear analysis considering both geometric and material non-linearity on stiffened panels with various stringers like a blade, L, inverted T and Z sections the results were presented. Arrived at the optimum stringer section type for the considered panel under axial loading from the numerical analysis.

Crack Growth Analysis and Crack Arrest Design of Stiffened Panels(III) - Experimental Evaluation of Crack Arrest Design Chart (보강판의 균열거동해석과 Crack Arrest 설계(III) - Crack Arrest Design 차트의 실험평가)

  • Rhee, Eui-Jong;Rhee, Hwan-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.2
    • /
    • pp.42-48
    • /
    • 2006
  • In order to assess the validity of fatigue crack arrest design charts obtained from our previous numerical approach to fatigue crack arrest condition, an extensive fatigue crack growth/arrest test was performed using CT-type integrally stiffened panels. The results are presented as fatigue crack growth rate and non-dimensional crack length relationship, and these are compared with numerically simulated crack growth rates. The measured values of da/dN at the moment of fatigue crack arrest occurred in stiffened panels are good agreement with those numerically simulated crack growth rates.

  • PDF

Remeshing techniques for r-adaptive and combined h/r-adaptive analysis with application to 2D/3D crack propagation

  • Askes, H.;Sluys, L.J.;de Jong, B.B.C.
    • Structural Engineering and Mechanics
    • /
    • v.12 no.5
    • /
    • pp.475-490
    • /
    • 2001
  • Remeshing strategies are formulated for r-adaptive and h/r-adaptive analysis of crack propagation. The relocation of the nodes, which typifies r-adaptivity, is a very cheap method to optimise a given discretisation since the element connectivity remains unaltered. However, the applicability is limited. To further improve the finite element mesh, a combined h/r-adaptive method is proposed in which h-adaptivity is applied whenever r-adaptivity is not capable of further improving the discretisation. Two and three-dimensional examples are presented. It is shown that the r-adaptive approach can optimise a discretisation at minimal computational costs. Further, the combined h/r-adaptive approach improves the performance of a fully r-adaptive technique while the number of h-remeshings is reduced compared to a fully h-adaptive technique.