In this paper, we present an effective covariance tracking algorithm based on adaptive size changing of tracking window. Recent researches have advocated the use of a covariance matrix of object image features for tracking objects instead of the conventional histogram object models used in popular algorithms. But, according to the general covariance tracking algorithm, it can not deal with the scale changes of the moving objects. The scale of the moving object often changes in various tracking environment and the tracking window(or object kernel) has to be adapted accordingly. In addition, the covariance matrix of moving objects should be adaptively updated considering of the tracking window size. We provide a solution to this problem by segmenting the moving object from the background pixels of the tracking window. Therefore, we can improve the tracking performance of the covariance tracking method. Our several simulations prove the effectiveness of the proposed method.
본 논문에서는 칼만 필터 알고리즘과 공분산 행렬을 결합한 강인한 이동 물체 추적 방법을 제안한다. 연속적으로 변화하는 영상 내에서 추적하고자 하는 물체의 특징으로서 공분산 행렬은 특징들의 상관관계뿐만 아니라 공간적인 속성과 통계적 속성을 다루므로 목표물의 형태와 모양의 변화에도 추적의 지속성을 보장한다. 그러나 이동 물체의 움직이는 속도가 연산 속도보다 고속의 경우 실시간 추적이 어려우며 탐색 윈도우가 목표물을 놓치므로 이를 해결하기 위해 칼만 필터를 사용하여 이동 물체의 영역을 추정하며, 칼만 탐색 윈도우 내 이동 물체 영역의 공분산 행렬을 특징 벡터로 구성하고, 후보 영역의 공분산 행렬과 비교하면서 추적하는 방법을 실험하여 96.3%의 추적률을 달성하였다.
In this paper, We propose a target tracking filter which utilizes the PDA for data association in a clutter environment and also propose an analytic solution for ideal filter covariance which accounts for all the possible events in the PDA. Monte Carlo simulation for the proposed filter in a clutter environment indicates that the proposed analytic solution forms the true error covariance of the PDA Filter.
본 논문은 공분산 행렬과 리만 다양체 이론에 근거를 둔 이동물체를 추적하는 새로운 방법을 제안한다. 연속적으로 변화하는 동영상 배경에서 다양한 변형을 겪는 비정형 물체를 추적하기 위해 공분산 행렬을 사용하여 특징 추출을 한다. 공분산 행렬은 특징들의 상관관계뿐만 아니라 공간적인 속성과 통계학적인 속성을 다룰 수 있으므로 서로 다른 유형의 특징들의 융합이 가능하며 행렬의 차원이 작다. 그러므로 이동물체 영역의 공분산 행렬을 특징벡터로 구성하고 후보 영역의 공분산 행렬과 비교 연산함으로써 각 프레임마다 이동물체의 위치를 추정할 수 있다. 여기서 리만 기하학은 이동물체의 변형과 모양 변화에 효과적으로 적용될 수 있으며 최소 거리를 갖는 추정 영역을 계산하기 위해 측지선 거리를 사용하므로 정확도를 향상시킨다. 제안한 방법의 효율성은 실험을 통해 검증하였다.
This paper presents a tracking filter with ship's motion compensation for a ship-borne radar tracking system. The ship's maneuver is described by displacement and rotational motions in the ship-centered east-north frame. The first order Taylor series approximation of the measurement error covariance of the converted measurement is derived in the ship-centered east-north frame. The ship's maneuver is compensated by incorporating the measurement error covariance of the converted measurement and displacement of the position state in the tracking filter. The simulation results via 500 Monte-Carlo runs show that the proposed method follows the target successfully and provides consistent tracking performance during ship's maneuvers while the conventional tracking filter without ship motion compensation fails to track during such periods.
이 논문에서는 표적 추적에 사용되는 PSN(Probabilistic Strongest Neighbor) 필터의 추적 성능을 예측한다. PSN 필터는 가장 강한 신호 크기를 가진 측정이 표적이외의 것으로부터 발생할 수 있다는 사건을 충분히 고려하기 때문에, 추적 성능에서 뿐만 아니라, 계산량 측면에서도 PDA(Probabilistic Data association) 필터보다 뛰어나다고 알려져 있다. 추적필터의 추정오차 공분산행렬(covariance matrix)은 추적의 성능을 결정하는 성능지수(performance index)로 널리 사용된다. PSN 필터의 추정오차 공분산행렬은 측정 데이터의 함수로써, 측정 데이터와 무관하게 추적기의 성능을 표현하기 위해서 HYCA(HYbrid Conditional Average)방법을 이용하여 추정오차 공분산행렬의 기대값에 대한 식을 제시하였다. 수치실험을 통하여 이 논문에서 제시한 성능 예측이 타당함을 보인다.
Tracking performance depends on the quantity of the measurement data. In the Kalman-Bucy filter and other trackers, this dependence is well understood in terms of the measurement noise covariance matrix, which specifies the uncertainty in the value of measurement inputs. In this paper, we derived approximated error covariance matrix to evaluate the dependence of target detection probability and false alarm probability in the presence of uncertainty of measurement origin.
본 논문에서는 직교 좌표계에서 추적필터가 설계될 때, 표적의 거리와 방위에 대한 관측오차 공분산의 변화를 고려하기 위하여 정상상태 칼만필터의 해석적 해를 이용하는 IMM 추적기를 설계하였다. 제안된 정상상태 칼만필터 기반 IMM 추적기의 성능분석 및 검증을 위하여 거리의 변화가 작은 표적과 거리의 변화가 큰 표적에 대하여 각각 100회의 Monte Carlo 시뮬레이션을 수행하고, 고정이득 및 칼만필터 기반의 IMM 추적기와 RMS 오차분석을 통하여 비교하였다. 모의실험 결과로부터 제안된 방법이 칼만필터 기반 IMM 추적필터에 비하여 연산량을 크게 감소시킬 수 있으며, 유사한 추적성능을 제공할 수 있음을 확인하였다.
본 논문에서는 근거리 미사일/로켓 방어시스템의 대응탄용 근접센서에 적용되는 칼만필터 기반 지면밀착 접근표적 추적기법을 제안한다. 탄의 전면에 위치한 근접센서는 지면 클러터를 최소화하기 위한 안테나의 제한된 빔폭으로 인해 위협체가 파편 분산 범위에 들어오는 순간을 감지하기 쉽지 않다. 또한 복잡한 지상 환경에서는 위협체뿐만 아니라, 바위, 나무 등과 같은 클러터 정보를 포함하여 정확한 위협체 감지에 어려움이 따른다. 이를 해결하기 위해 본 연구에서는 칼만필터 기반의 접근표적 추적기법을 제시하고, 추적성능 향상을 위한 잡음 공분산 행렬의 새로운 추정 방식을 적용한다. 이후 제안한 잡음 공분산 행렬을 적용한 칼만필터의 우수한 추적 성능을 발사시험 결과를 통해 제시하여 연구의 타당성을 검증한다.
수중음향 시스템에서는 이동 표적에 대한 상태 추정 및 표적 식별 등의 목적을 위해서 표적 방위 추적은 필수적이다. 그러나 감시영역에 근접 또는 교차 표적 등이 존재하는 다수 표적 상황에서의 방위 추적은 매우 어려운 문제로 다양한 접근방법으로 연구되어 왔다. SWORD는 배열 센서 신호의 출력 공분산 행렬로부터 방위 변위를 추정하여 표적을 추적함으로써 별도의 정보 연관 과정이 필요 없는 단순한 구조의 다중 표적 방위 추적 알고리즘을 제안하였으며, RYU 등은 표적 조향 벡터 (target steering vector)와 배열 센서 공분산 행렬의 신호 고유 벡터 (signal eigenvector)가 선형결합 관계임을 이용하여 교차 표적 (cross target)에 대해서도 우수한 성능을 나타내는 효율적인 알고리즘을 제안하였다. 또한 HWANG 등은 잡음 고유 벡터 (noise eigenvector)와 표적 조향 벡터가 직교 관계임을 이용하여 RYU의 알고리즘과 동일한 성능을 유지하면서 연산량을 개선한 알고리즘을 제안하였다. 그러나 기존의 방법은 코히어런트 (coherent) 다중 표적인 경우에는 추적 성능이 저하되는 단점이 있다. 본 논문에서는 배열 센서의 공분산 행렬로부터 추정할 수 있는 신호 고유 벡터와 잡음 공분산 행렬 (noise covariance matrix)의 특성을 이용하여 코히어런트 다중 표적에 대해 추적 성능을 유지할 수 있는 다중 표적 방위 추적 알고리즘을 제안하였으며, 근접 및 교차 기동하는 표적에 대한 시뮬레이션을 통하여 비코히어런트 (incoherent)와 코히어런트 다중 표적에 대해 추적 성능이 우수함을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.