• Title/Summary/Keyword: coupling model

Search Result 1,411, Processing Time 0.03 seconds

A THERMO-ELASTO-VISCOPLASTIC MODEL FOR COMPOSITE MATERIALS AND ITS FINITE ELEMENT ANALYSIS

  • Shin, Eui-Sup
    • Journal of Theoretical and Applied Mechanics
    • /
    • v.3 no.1
    • /
    • pp.45-65
    • /
    • 2002
  • A constitutive model on oorthotropic thermo-elasto-viscoplasticity for fiber-reinforced composite materials Is illustrated, and their thermomechanical responses are predicted with the fully-coupled finite element formulation. The unmixing-mixing scheme can be adopted with the multipartite matrix method as the constitutive model. Basic assumptions based upon the composite micromechanics are postulated, and the strain components of thermal expansion due to temperature change are included In the formulation. Also. more than two sets of mechanical variables, which represent the deformation states of multipartite matrix can be introduced arbitrarily. In particular, the unmixing-mixing scheme can be used with any well-known isotropic viscoplastic theory of the matrix material. The scheme unnecessitates the complex processes for developing an orthotropic viscoplastic theory. The governing equations based on fully-coupled thermomechanics are derived with constitutive arrangement by the unmixing-mixing concept. By considering some auxiliary conditions, the Initial-boundary value problem Is completely set up. As a tool of numerical analyses, the finite element method Is used with isoparametric Interpolation fer the displacement and the temperature fields. The equation of mutton and the energy conservation equation are spatially discretized, and then the time marching techniques such as the Newmark method and the Crank-Nicolson technique are applied. To solve the ultimate nonlinear simultaneous equations, a successive iteration algorithm is constructed with subincrementing technique. As a numerical study, a series of analyses are performed with the main focus on the thermomechanical coupling effect in composite materials. The progress of viscoplastic deformation, the stress-strain relation, and the temperature History are careful1y examined when composite laminates are subjected to repeated cyclic loading.

  • PDF

Effect of Foreign Molecules on the SERS of Probe Molecules Trapped in Gaps between Planar Ag and Nano-sized Ag Particles

  • Kim, Kwan;Choi, Jeong-Yong;Shin, Kuan Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.793-800
    • /
    • 2013
  • A few years ago, the plasmon-induced electronic coupling (PIEC) model was proposed in the literature to explain small changes in the surface-enhanced Raman scattering (SERS) in nanogap systems. If this model is correct, it will be very helpful in both basic and application fields. In light of this, we carefully reexamined its appropriateness. Poly(4-vinylpyridine) (P4VP) used in the earlier work was, however, never a proper layer, since most adsorbates not only adsorbed onto Ag nanoparticles sitting on P4VP but also penetrated into the P4VP layer deposited initially onto a flat Ag substrate, ultimately ending up in the SERS hot sites. Using 1,4-phenylenediisocyanide and 4-nitrophenol as the affixing layer and the foreign adsorbate, respectively, we could clearly reveal that the PIEC model is not suited for explaining the Raman signal in a nanogap system. Most of the Raman signal must have arisen from molecules situated at the gap center.

Laser-induced Damage to Polysilicon Microbridge Component

  • Zhou, Bing;He, Xuan;Li, Bingxuan;Liu, Hexiong;Peng, Kaifei
    • Current Optics and Photonics
    • /
    • v.3 no.6
    • /
    • pp.502-509
    • /
    • 2019
  • Based on the typical pixel structure and parameters of a polysilicon uncooled bolometer, the absorption rate of a polysilicon microbridge infrared detector for 10.6 ㎛ laser energy was calculated through the optical admittance method, and the thermal coupling model of a polysilicon microbridge component irradiated by far infrared laser was established based on theoretical formulas. Then a numerical simulation study was carried out by means of finite element analysis for the actual working environment. It was found that the maximum temperature and maximum stress of the microbridge component are approximately exponentially changing with the laser power of the irradiation respectively and that they increase monotonically. The highest temperature zone of the model is gradually spread by the two corners of the bridge surface that are not connected to the bridge legs, and the maximum stress acts on both sides of the junction of the microbridge legs and the substrate. The mechanism of laser-induced hard damage to polysilicon detectors is the melting damage caused by high temperature. This paper lays the foundation for the subsequent study of the interference mechanism of the laser on working state polysilicon detectors.

Flexural-torsional Vibration Analysis of Thin-walled C-Section Composite Beams (박벽 C형 복합재료 보의 휨-비틀림 진동 해석)

  • Kim, Young Bin;Lee, Jae Hong
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.1
    • /
    • pp.31-40
    • /
    • 2002
  • Free vibration of a thin-walled laminated composite beam is studied. A general analytical model applicable to the dynamic behavior of a thin-walled channel section composite is developed. This model is based on the classical lamination theory, and accounts for the coupling of flexural and torsional modes for arbitrary laminate stacking sequence configuration. i.e. unsymmetric as well as symmetric, and various boundary conditions. A displacement-based one-dimensional finite element model is developed to predict natural frequencies and corresponding vibration modes for a thin-walled composite beam. Equations of motion are derived from the Hamilton's principle. Numerical results are obtained for thin-walled composite addressing the effects of fiber angle. modulus ratio. and boundary conditions on the vibration frequencies and mode shapes of the composites.

Strength Analysis of Bolt Joints for an Open Frame Structure (개방형 프레임 구조물의 볼트 조인트 강도해석)

  • Lee, Jin-Min;Lee, Min-Uk;Cho, Su-Kil;Koo, Man-Hoi;Gimm, Hak-In;Lee, Tae-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.8
    • /
    • pp.819-825
    • /
    • 2009
  • An open frame structure is fastened by bolt joints for strength and shock attenuation. Therefore the full finite element model of an open frame structure should be properly modeled including bolt joints for strength analysis of the frames and joint assemblies which are operated under multi-loading conditions such as driving, drop, inertia and torsional loads. Then the joints and frames must satisfy the specified allowable strength constraints. Because the full finite element model has a large number of elements to perform strength analysis, a detailed fine bolt analysis seems to be very expensive. Therefore bolts of the full finite element model are approximately modeled by coupling method to constrain degree of freedoms between adjacent nodes. However, the coupling method can exaggerate stress results at the constrained nodes. Thus a detailed bolt analysis and a theoretical/experiential formula of bolts for a worst bolt joint are performed using reaction force applied both bolt and bolt joint. Finally, the results from the two methods are compared and discussed to verify the safety of the open frame structure.

Simulation of ATP Metabolism in Cardiac Excitation - Contraction Coupling

  • Matsuoka, Satoshi;Sarai, Nobuaki;Jo, Hikari;Noma, Akinori
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.19-19
    • /
    • 2003
  • We have developed a cardiac cell model (Kyoto Model) for the sinoatrial node and ventricle, which is composed of a common set of kinetic equations of membrane ionic currents, Ca$\^$2+/dynamics of sarcoplasmic reticulum and contractile protein. To expand this model by including metabolic pathways, the intracellular ATP metabolism, which is pivotal in cardiac excitation - contraction coupling, was incorporated. ATP consumption by the sarcolemmal Na$\^$+/ pump and the Ca pump in the sarcoplasmic reticulum were calculated with stoichiometry of 3Na:2K:1ATP and 2Ca:1ATP, respectively. ATP consumption by contraction was estimated according to experimental data. Dependence of contraction on ATP and inorganic phosphate was modeled, based on data of skinned cardiac fiber. in production by mitochondrial oxidative phosphorylation was modified from Korzeniewski '||'&'||' Zoladz (2001), and creatine kinase and adenylate kinase reactions were incorporated. ATP dependence of ATP-sensitive K channel and L type Ca channel were also included.

  • PDF

Dynamic Analysis of the Effect of Base Flexibility on a Spinning Disk Dynamics in a Small Size Disk Drive (소형 디스크 드라이브에 있어서 베이스 강성이 회전하는 원판에 미치는 동적영향 분석)

  • Lee, Sung-Jin;Hong, Soon-Kyo;Cheong, Young-Min
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.601-606
    • /
    • 2001
  • Free vibration analysis was performed for a spinning disk/spindle system mounted on a flexible baseplate. A simplified model was presented considering the effects of the baseplate flexibility on a disk/spindle system, and the equations of motion were derived by the assumed mode method and Lagrange's equation. From the results of the tree vibration analysis, the variations of the natural frequencies were investigated by changing rotating speed, baseplate thickness. They were attributed to the coupling between the flexible modes of the spinning disk/spindle system and the baseplate. This simplified model was used to predict the dynamic characteristics of a small size disk drive. The validity of the simplified model was verified by experiments and FE analysis.

  • PDF

Design of Gain Controller of Decoupling Control of Grid-connected Inverter with LCL Filter

  • Windarko, Novie Ayub;Lee, Jin-Mok;Choi, Jae-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2008.10a
    • /
    • pp.124-126
    • /
    • 2008
  • Grid Connected inverter is produced current to deliver power to grid. To provide low THD current, LCL filters is effective to filter high frequency component of current output from inverter. To provide sinusoidal waveform, there are many researchers have been proposed several controllers for grid-connected inverter controllers. Synchronous Reference Frame (SRF)-based controller is the most popular methods. SRF-based controller is capable for reducing both of zero-steady state error and phase delay. But SRF based controller is contained cross-coupling components, which generate some difficulties to analyze. In this paper, SRF based controller is analyzed. By applying decoupling control, cross-coupling component is eliminated and single phase model of the system is obtained. Through this single phase model, gain controller is designed. To reduce steady state error, proportional gain is set as high as possible, but it may produce instability. To compromise between a minimum steady state error and stability, the single phase model is evaluate through Root Locus and Bode diagram. PSIM simulation is used to verify the analysis.

  • PDF

Torsional Damping Estimation of a Segmented Hull Model with Modal Coupling (모드 연성을 수반하는 분할 모형의 비틀림 감쇠비 추정)

  • Kim, Yooil;Park, Sung-Gun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.6
    • /
    • pp.482-493
    • /
    • 2016
  • The identification of modal damping of a segmented hull model with torsional response is difficult task due to the coupling of modal response. This is because the 1st and 2nd torsional vibration modes are closely spaced in frequency domain leading to the situation that the modal decomposition is difficult to achieve by simple band-pass filter. Present study applied several different modal decomposition methods to derive the damping ratio of different modes. The modal decomposition methods considered in this study are simple band-pass filter, Hilbert vibration decomposition, Wavelet transform and proper orthogonal decomposition. Coupled free decay signal obtained from the torsional hammering test on a segmented hull model was processed with four different methods and the derived damping ratios were compared with each other. Discussions also have been made on the pros and cons of the different methodologies.

Position error compensation of the multi-purpose overload robot in nuclear power plants

  • Qin, Guodong;Ji, Aihong;Cheng, Yong;Zhao, Wenlong;Pan, Hongtao;Shi, Shanshuang;Song, Yuntao
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2708-2715
    • /
    • 2021
  • The Multi-Purpose Overload Robot (CMOR) is a key subsystem of China Fusion Engineering Test Reactor (CFETR) remote handling system. Due to the long cantilever and large loads of the CMOR, it has a large rigid-flexible coupling deformation that results in a poor position accuracy of the end-effector. In this study, based on the Levenberg-Marquardt algorithm, the spatial grid, and the linearized variable load principle, a variable parameter compensation model was designed to identify the parameters of the CMOR's kinematics models under different loads and at different poses so as to improve the trajectory tracking accuracy. Finally, through Adams-MATLAB/Simulink, the trajectory tracking accuracy of the CMOR's rigid-flexible coupling model was analyzed, and the end position error exceeded 0.1 m. After the variable parameter compensation model, the average position error of the end-effector became less than 0.02 m, which provides a reference for CMOR error compensation.