DOI QR코드

DOI QR Code

Position error compensation of the multi-purpose overload robot in nuclear power plants

  • Qin, Guodong (College of Mechanical & Electrical Engineering, Nanjing University of Aeronautics & Astronautics) ;
  • Ji, Aihong (College of Mechanical & Electrical Engineering, Nanjing University of Aeronautics & Astronautics) ;
  • Cheng, Yong (Institute of Plasma Physics, Chinese Academy of Science) ;
  • Zhao, Wenlong (Institute of Plasma Physics, Chinese Academy of Science) ;
  • Pan, Hongtao (Institute of Plasma Physics, Chinese Academy of Science) ;
  • Shi, Shanshuang (Institute of Plasma Physics, Chinese Academy of Science) ;
  • Song, Yuntao (Institute of Plasma Physics, Chinese Academy of Science)
  • Received : 2020.09.10
  • Accepted : 2021.02.07
  • Published : 2021.08.25

Abstract

The Multi-Purpose Overload Robot (CMOR) is a key subsystem of China Fusion Engineering Test Reactor (CFETR) remote handling system. Due to the long cantilever and large loads of the CMOR, it has a large rigid-flexible coupling deformation that results in a poor position accuracy of the end-effector. In this study, based on the Levenberg-Marquardt algorithm, the spatial grid, and the linearized variable load principle, a variable parameter compensation model was designed to identify the parameters of the CMOR's kinematics models under different loads and at different poses so as to improve the trajectory tracking accuracy. Finally, through Adams-MATLAB/Simulink, the trajectory tracking accuracy of the CMOR's rigid-flexible coupling model was analyzed, and the end position error exceeded 0.1 m. After the variable parameter compensation model, the average position error of the end-effector became less than 0.02 m, which provides a reference for CMOR error compensation.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11802305, 51875281, and 51861135306), the China National Special Project for Magnetic Confinement Fusion Science Program (Grant No. 2017YFE0300503), and the Fundamental Research Funds for the Central Universities (Grant No. NP2018112).

References

  1. M. Lei, Y. Song, S. Liu, et al., Conceptual design of the HCCB blanket system integration for CFETR, Int. J. Energy Res. 43 (2019) 3306-3312. https://doi.org/10.1002/er.4467
  2. C. Choi, A. Tesini, R. Subramanian, et al., Multi-purpose deployer for ITER invessel maintenance, Fusion Eng. Des. 98-99 (2015) 1448-1452. https://doi.org/10.1016/j.fusengdes.2015.06.156
  3. H. Tian, D. Zhao, F. Yin, et al., Kinematic calibration of a 6-DOF hybrid robot by considering multicollinearity in the identification Jacobian, Mech. Mach. Theor. 131 (2019) 371-384. https://doi.org/10.1016/j.mechmachtheory.2018.10.008
  4. A. Cibicik, E. Pedersen, O. Egeland, Dynamics of luffing motion of a flexible knuckle boom crane actuated by hydraulic cylinders, Mech. Mach. Theor. 43 (2020) 1-18. https://doi.org/10.1016/j.mechmachtheory.2006.12.011
  5. N. Liu, X. Zhang, L. Zhang, et al., Study on the rigid-flexible coupling dynamics of welding robot, Wireless Pers. Commun. 102 (2018) 1-12. https://doi.org/10.1007/s11277-018-5790-6
  6. M.S. Manuelraj, P. Dutta, K.K. Gotewal, et al., Structural analysis of ITER multipurpose deployer, Fusion Eng. Des. 109 (2016) 1296-1301. https://doi.org/10.1016/j.fusengdes.2015.12.039
  7. G.G. Sen, S. Mukhopadhyay, M. Chris H, et al., Master slave control of a teleoperated anthropomorphic robotic arm with gripping force sensing, IEEE. T. Instrum. Meas. 55 (2006) 2136-2145. https://doi.org/10.1109/TIM.2006.884393
  8. L. Huang, Y. Hironao, N. Tao, et al., A mastereslave control method with gravity compensation for a hydraulic teleoperation construction robot, Adv. Mech. Eng. 9 (2017) 1-11.
  9. B. Haist, S. Mills, A. Loving, Remote handling preparations for JET EP2 shutdown, Fusion Eng. Des. 84 (2-6) (2009) 875-879. https://doi.org/10.1016/j.fusengdes.2009.01.050
  10. G. Liu, X. Wu, Y. Chen, et al., Analysis of influences of end position mass and joint rotary inertia on motion stability of a flexible manipulator arm, China Mech. Eng. 25 (4) (2014) 480-485. https://doi.org/10.3969/j.issn.1004-132X.2014.04.011
  11. Y. Zhang, C. Liu, P. Liu, Industrial robot kinematics parameter identification, Adv. Mater. 889 (2014) 1136-1143.
  12. X. Shan, G. Cheng, Structural error and friction compensation control of a 2(3PUS+S) parallel manipulator, Mech. Mach. Theor. 124 (2018) 92-103. https://doi.org/10.1016/j.mechmachtheory.2018.02.004
  13. G. Qin, A. Ji, W. Wang, et al., Analyzing trajectory tracking accuracy of a flexible multi-purpose deployer, Fusion Eng. Des. 151 (2020) 1-10.
  14. L. Yan, W. Xu, Z. Hu, et al., Virtual-base modeling and coordinated control of a dual-arm space robot for target capturing and manipulation, Multibody Syst. Dyn. 45 (2018) 431-455. https://doi.org/10.1007/s11044-018-09647-z
  15. H. Luo, Y. Liu, Z. Chen, et al., Co-simulation control of robot arm dynamics in ADAMS and MATLAB, Res. J. Appl. Sci. Eng. Technol. 6 (20) (2013) 3778-3783. https://doi.org/10.19026/rjaset.6.3591
  16. S. Hayati, M. Mirmirani, Improving the absolute positioning accuracy of robot manipulators, J. Rob. Syst. 2 (4) (1985) 397-413. https://doi.org/10.1002/rob.4620020406
  17. P. Hong, W. Tian, D. Mei, et al., Robotic variable parameter accuracy compensation using space grid, Robot 37 (3) (2015) 327-335.
  18. C. Zhang, Dynamic modeling of robot arm with joint and link flexibility manipulating a constrained object, Chin. J. Mech. Eng-En. 39 (6) (2013) 9-12. https://doi.org/10.3901/JME.2003.06.009