Acknowledgement
This work was supported by the National Natural Science Foundation of China (Grant Nos. 11802305, 51875281, and 51861135306), the China National Special Project for Magnetic Confinement Fusion Science Program (Grant No. 2017YFE0300503), and the Fundamental Research Funds for the Central Universities (Grant No. NP2018112).
References
- M. Lei, Y. Song, S. Liu, et al., Conceptual design of the HCCB blanket system integration for CFETR, Int. J. Energy Res. 43 (2019) 3306-3312. https://doi.org/10.1002/er.4467
- C. Choi, A. Tesini, R. Subramanian, et al., Multi-purpose deployer for ITER invessel maintenance, Fusion Eng. Des. 98-99 (2015) 1448-1452. https://doi.org/10.1016/j.fusengdes.2015.06.156
- H. Tian, D. Zhao, F. Yin, et al., Kinematic calibration of a 6-DOF hybrid robot by considering multicollinearity in the identification Jacobian, Mech. Mach. Theor. 131 (2019) 371-384. https://doi.org/10.1016/j.mechmachtheory.2018.10.008
- A. Cibicik, E. Pedersen, O. Egeland, Dynamics of luffing motion of a flexible knuckle boom crane actuated by hydraulic cylinders, Mech. Mach. Theor. 43 (2020) 1-18. https://doi.org/10.1016/j.mechmachtheory.2006.12.011
- N. Liu, X. Zhang, L. Zhang, et al., Study on the rigid-flexible coupling dynamics of welding robot, Wireless Pers. Commun. 102 (2018) 1-12. https://doi.org/10.1007/s11277-018-5790-6
- M.S. Manuelraj, P. Dutta, K.K. Gotewal, et al., Structural analysis of ITER multipurpose deployer, Fusion Eng. Des. 109 (2016) 1296-1301. https://doi.org/10.1016/j.fusengdes.2015.12.039
- G.G. Sen, S. Mukhopadhyay, M. Chris H, et al., Master slave control of a teleoperated anthropomorphic robotic arm with gripping force sensing, IEEE. T. Instrum. Meas. 55 (2006) 2136-2145. https://doi.org/10.1109/TIM.2006.884393
- L. Huang, Y. Hironao, N. Tao, et al., A mastereslave control method with gravity compensation for a hydraulic teleoperation construction robot, Adv. Mech. Eng. 9 (2017) 1-11.
- B. Haist, S. Mills, A. Loving, Remote handling preparations for JET EP2 shutdown, Fusion Eng. Des. 84 (2-6) (2009) 875-879. https://doi.org/10.1016/j.fusengdes.2009.01.050
- G. Liu, X. Wu, Y. Chen, et al., Analysis of influences of end position mass and joint rotary inertia on motion stability of a flexible manipulator arm, China Mech. Eng. 25 (4) (2014) 480-485. https://doi.org/10.3969/j.issn.1004-132X.2014.04.011
- Y. Zhang, C. Liu, P. Liu, Industrial robot kinematics parameter identification, Adv. Mater. 889 (2014) 1136-1143.
- X. Shan, G. Cheng, Structural error and friction compensation control of a 2(3PUS+S) parallel manipulator, Mech. Mach. Theor. 124 (2018) 92-103. https://doi.org/10.1016/j.mechmachtheory.2018.02.004
- G. Qin, A. Ji, W. Wang, et al., Analyzing trajectory tracking accuracy of a flexible multi-purpose deployer, Fusion Eng. Des. 151 (2020) 1-10.
- L. Yan, W. Xu, Z. Hu, et al., Virtual-base modeling and coordinated control of a dual-arm space robot for target capturing and manipulation, Multibody Syst. Dyn. 45 (2018) 431-455. https://doi.org/10.1007/s11044-018-09647-z
- H. Luo, Y. Liu, Z. Chen, et al., Co-simulation control of robot arm dynamics in ADAMS and MATLAB, Res. J. Appl. Sci. Eng. Technol. 6 (20) (2013) 3778-3783. https://doi.org/10.19026/rjaset.6.3591
- S. Hayati, M. Mirmirani, Improving the absolute positioning accuracy of robot manipulators, J. Rob. Syst. 2 (4) (1985) 397-413. https://doi.org/10.1002/rob.4620020406
- P. Hong, W. Tian, D. Mei, et al., Robotic variable parameter accuracy compensation using space grid, Robot 37 (3) (2015) 327-335.
- C. Zhang, Dynamic modeling of robot arm with joint and link flexibility manipulating a constrained object, Chin. J. Mech. Eng-En. 39 (6) (2013) 9-12. https://doi.org/10.3901/JME.2003.06.009