• Title/Summary/Keyword: coupling factor

Search Result 765, Processing Time 0.027 seconds

A Comparison Study on Near-surface High-resolution Seismic Data by Different Source and Geophone Types (진원과 수진기별 천부 고해상도 탄성파 자료 비교 연구)

  • Kim, Hyoung-Soo;Keehm, Young-Seuk
    • Journal of the Korean earth science society
    • /
    • v.32 no.6
    • /
    • pp.674-686
    • /
    • 2011
  • Choosing a seismic source and geophone type including a coupling method can be the most important factor in shallow seismic surveys. We studied the characteristics of seismic signals by analyzing 6 different seismic data sets that collected from several sources and geophone conditions. Geophones attached to weight plate (1.8 kg) can be easily and economically installed on the paved road where geophones with spikes would cause the coupling problem. In addition, experiments in this study revealed that a small handy hammer can be used as a seismic source by striking the paved road to generate the seismic signals within 200 ms two-way travel time. Attaching weight plates to geophones may change the geophone response curve which generally depends on the geophone mass, but the change seems not to give significant differences in the first arrival of refracted wave and in the pattern of reflection events. Consequently, using weight plates on paved roads can be an efficient and cost-saving method in the near-surface high-resolution seismic surveys.

Analysis of Elements for Efficiencies in Magnetically-Coupled Wireless Power Transfer System Using Metamaterial Slab (메타물질 Slab이 포함된 자계 결합 무선 전력 전송 시스템 효율 요소 분석)

  • Kim, Gunyoung;Oh, TaekKyu;Lee, Bomson
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.11
    • /
    • pp.1128-1134
    • /
    • 2014
  • In this paper, the effects of a metamaterial slab with negative permeability in a magnetically coupled wireless power transfer system (WPT) in the overall performance are analyzed quantitatively in terms of the effective quality factors of the loop resonators and coupling coefficient considering the slab losses, based on an equivalent circuit. Using the ideal metamaterial slab(lossless slab), the WPT efficiency is improved considerably by the magnetic flux focusing. However, the practical lossy slab made of RRs or SRRs limits the significant enhancement of WPT efficiency due to the relatively high losses in the slab consisting of RRs or SRRs near the resonant frequency. For the practical loop resonator, other than a point magnetic charge, using the practical lossy metamaterial slab in order to improve the transfer efficiency, the width of the slab needs to be optimized somewhat less than the half of the distance between two loop resonators. For the low-loss slab with its loss tangent of 0.001, the WPT efficiency is maximized at 93 % when the ratio of the slab width and the distance between the two resonators is approximately 0.35, compared with 53 % for the case without the slab. The efficiency in case of employing the high-low slab(loss tangent: 0.2) is maximized at 61 % when the slab ratio is 0.25.

Reliability of mortar filling layer void length in in-service ballastless track-bridge system of HSR

  • Binbin He;Sheng Wen;Yulin Feng;Lizhong Jiang;Wangbao Zhou
    • Steel and Composite Structures
    • /
    • v.47 no.1
    • /
    • pp.91-102
    • /
    • 2023
  • To study the evaluation standard and control limit of mortar filling layer void length, in this paper, the train sub-model was developed by MATLAB and the track-bridge sub-model considering the mortar filling layer void was established by ANSYS. The two sub-models were assembled into a train-track-bridge coupling dynamic model through the wheel-rail contact relationship, and the validity was corroborated by the coupling dynamic model with the literature model. Considering the randomness of fastening stiffness, mortar elastic modulus, length of mortar filling layer void, and pier settlement, the test points were designed by the Box-Behnken method based on Design-Expert software. The coupled dynamic model was calculated, and the support vector regression (SVR) nonlinear mapping model of the wheel-rail system was established. The learning, prediction, and verification were carried out. Finally, the reliable probability of the amplification coefficient distribution of the response index of the train and structure in different ranges was obtained based on the SVR nonlinear mapping model and Latin hypercube sampling method. The limit of the length of the mortar filling layer void was, thus, obtained. The results show that the SVR nonlinear mapping model developed in this paper has a high fitting accuracy of 0.993, and the computational efficiency is significantly improved by 99.86%. It can be used to calculate the dynamic response of the wheel-rail system. The length of the mortar filling layer void significantly affects the wheel-rail vertical force, wheel weight load reduction ratio, rail vertical displacement, and track plate vertical displacement. The dynamic response of the track structure has a more significant effect on the limit value of the length of the mortar filling layer void than the dynamic response of the vehicle, and the rail vertical displacement is the most obvious. At 250 km/h - 350 km/h train running speed, the limit values of grade I, II, and III of the lengths of the mortar filling layer void are 3.932 m, 4.337 m, and 4.766 m, respectively. The results can provide some reference for the long-term service performance reliability of the ballastless track-bridge system of HRS.

Capacitively-coupled Resistivity Method - Applicability and Limitation (비접지식 전기비저항 탐사 - 적용성과 한계)

  • Lee Seong Kon;Cho Seong-Jun;Song Yoonho;Chung Seung-Hwan
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.1
    • /
    • pp.23-32
    • /
    • 2002
  • Capacitively-coupled resistivity (CCR) system is known to be very useful where galvanic contact to earth is impossible, such as the area covered with thick ice, snow, concrete or asphalt. This system injects current non-galvanically, i.e., capacitively to earth through line antenna and measures potential difference in a same manner. We derived geometric factor for two types of antenna configuration and presented the method of processing and converting the data obtained with CCR system suitable to conventional resistivity inversion analysis. The CCR system, however, has limitations on use at conductive area or electrically noisy area since it is very difficult to inject sufficient current to earth with this system as with conventional resistivity system. This causes low SM ratio when acquiring data with CCR system and great care must be taken in acquiring data with this system. Additionally the uniform contact between line antennas and earth is also crucial factor to obtain good S/N ratio data. The CCR method, however, enables one to perform continuous profiling over a survey line by dragging entire system and thus will be useful in rapid investigation of conductivity distribution in shallow subsurface.

Practical Guide to the Characterization of Piezoelectric Properties (압전재료의 기초 물성 측정)

  • Kang, Woo-Seok;Lee, Geon-Ju;Jo, Wook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.5
    • /
    • pp.301-313
    • /
    • 2021
  • Theoretical background for the meaning of various piezoelectric properties can be easily found in a number of textbooks and academic papers. In contrast, how they are actually measured and characterized are rarely described, though this information would be the most important especially to the researchers who just started working on the field. It follows that this report was intended to provide a practical guidance for measuring basic but essential properties of ferroelectric-based piezoelectric materials. The discussion begins with how to measurement dielectric properties such as dielectric permittivity and loss (dissipation factor), followed by piezoelectric properties such as piezoelectric constants, electromechanical coupling factor, and quality factor as well as ferroelectric features, i.e., electric field dependent polarization hysteresis. Though our discussion here is limited to the techniques that are already well-standardized, it is expected to make a seed to be developed into more challenging and creative ones.

Electromechanical Properties of PMN-PT-PZ Composition for High Power Device (고출력 압전소자를 위한 압전 세라믹(PMN-PT-PZ)조성의 전기기계적 특성)

  • Lee, K.W.;Hong, J.K.;Jeong, S.H.;Lee, J.S.;Park, C.H.;Lim, K.J.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1723-1725
    • /
    • 1999
  • This paper is the study for piezoelectric properties of PMN-PT-PZ composition for high power piezoelectric device. It needs the properties such as high mechanical quality factor(Qm), high electromechanical coupling coefficient(kp) and high dielectric strain constant$(d_31)$, and the stable electromechanical properties under high vibration level. For acquiring this results, the value of x is changed in 0.1Pb$(Mn_{1/3}Nb_{2/3})O_3$+(0.9-x)$PbZrO_3+xPbTiO_3$ composition to find MPB(morphotropic phase boundary), and the piezoelectric constants is measured by resonance-antiresonance frequency method, based on IRE Standard. Also, it is measured as a function of the amount of additive, $Nb_2O_5$. When the composition is applied to high power device, the electromechanical properties is measured by laser vibrometer to confirm the reliablity under high vibration level. From these results, PMN-PT-PZ composition is shown excellent properties and capacity of application to high power device.

  • PDF

Dielectric and Piezoelectric Properties of Lead-free (Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3 Ceramics (비납계 (Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3 세라믹의 유전 및 압전 특성)

  • Cho J. A.;Kuk M.-H.;Sung Y. S.;Lee S. H.;Song T. K.;Jeong S. J.;Song J. S.;Kim M.-H.
    • Korean Journal of Materials Research
    • /
    • v.15 no.10
    • /
    • pp.639-643
    • /
    • 2005
  • Lead-free $[Bi_{0.5}(Na_{1-x}K_x)_{0.5}TiO_3](x=0\~1.0)$ ceramics were prepared using a solid state reaction method and their structural and electrical characteristics were investigated. X-ray investigations indicated that the rhombohedral-tetragonal morphotropic phase boundary(MPB) of the $[Bi_{0.5}(Na_{1-x}K_x)TiO_3$ ceramics exists in the range of $x=0.16\~0.20$. The optimum values of piezoelectric constant$(d_{33})$, dielectric constant, and electromechanical coupling factor $(k_p)$ were obtained at $x=0.16\~0.20$ of the MPB region.

Crystal Structure and Piezoelectric Properties of Four Component Langasite A3B Ga3Si2O14 (A = Ca or Sr, B = Ta or Nb)

  • Ohsato, Hitoshi;Iwataki, Tsuyoshi;Morikoshi, Hiroki
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.4
    • /
    • pp.171-176
    • /
    • 2012
  • As langasite $A_3BC_3D_2O_{14}$ compounds with piezoelectric properties exhibit no phase transition up to the melting point of 1,400-$1,500^{\circ}C$, many high temperature applications are expected for the SAW filter, temperature sensor, pressure sensor, and so on, based on the digital transformation of wider bandwidth and higher-bit rates. It has a larger electromechanical coupling factor compared to quartz and also nearly the same temperature stability as quartz. The $La_3Ga_5SiO_{14}$ (LGS) crystal with the $Ca_3Ga_2Ge_4O_{14}$-type crystal structure was synthesized and the crystal structure was analyzed by Mill et al. It is also an important feature that the growth of the single crystal is easy. In the case of three-element compounds such as $[R_3]_A[Ga]_B[Ga_3]_C[GaSi]_DO_{14}$ (R=La, Pr and Nd), the piezoelectric constant increases with the ionic radius of R. In this study, crystal structures of four-element compounds such as $[A_3]_A[B]_B[Ga_3]_C[Si_2]_DO_{14}$ (A = Ca or Sr, B = Ta or Nb) are analyzed by a single crystal X-ray diffraction, and the mechanism and properties of the piezoelectricity depending on the species of cation was clarified based on the crystal structure.

Factors Affecting Membrane Fouling in Membrane Filtration of Activated Sludge (막결합형 활성슬러지 시스템에서의 막오염 유발 인자)

  • Chang, In-Soung;Lee, Chung-Hak
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.2
    • /
    • pp.323-329
    • /
    • 2000
  • The coupling of an activated sludge reactor with a membrane unit, i.e., Membrane Coupled Activated Sludge (MCAS) system offers several advantages over conventional process. But the major hurdle in the extensive use of this process is the continuous reduction of permeation flux caused by membrane fouling. The aim of this study is to investigate membrane fouling characteristics in the MCAS process. During crossflow ultrafiltration(CFUF) of activated sludge, floc size decreased abruptly at the beginning of operation and thereafter decreased continuously and gradually. The floc size changed from 100~200 to $6{\sim}8{\mu}m$ depending on recirculation velocity. This floc breakage played a key role in rapid increase of $R_c$(cake layer resistance), which led to flux decline. The floc breakage stimulated biomass to release EPS(Extracellular Polymeric Substance) which has been known to be one of the major membrane foul-ants. The amounts of EPS before and after CFUF were 266 and 405(VS mg/MLSS g), respectively. The rise up of EPS concentration was another factor affecting flux decline in MCAS system.

  • PDF

A Study on Malfunction Mode and Failure Rate Properties of Semiconductor by Impact of Pulse Repetition Rate (펄스 반복률에 의한 반도체 소자의 오동작 모드와 고장률에 관한 연구)

  • Park, Ki-Hoon;Bang, Jeong-Ju;Kim, Ruck-Woan;Huh, Chang-Su
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.6
    • /
    • pp.360-364
    • /
    • 2015
  • Electronic systems based on solid state devices have changed to be more complicated and miniaturized as the electronic systems developed. If the electronic systems are exposed to HPEM (high power electromagnetics), the systems will be destroyed by the coupling effects of electromagnetic waves. Because the HPEM has fast rise time and high voltage of the pulse, the semiconductors are vulnerable to external stress factor such as the coupled electromagnetic pulse. Therefore, we will discuss about malfunction behavior and DFR (destruction failure rate) of the semiconductor caused by amplitude and repetition rate of the pulse. For this experiment, the pulses were injected into the pins of general purpose IC due to the fact that pulse injection test enables the phenomenon after the HPEM is coupled to power cables. These pulses were produced by pulse generator and their characteristics are 2.1 [ns] of pulse width, 1.1 [ns] of pulse rise time and 30, 60, 120 [Hz] of pulse repetition rate. The injected pulses have changed frequency, period and duty ratio of output generated by Timer IC. Also, as the pulse repetition rate increases the breakdown threshold point of the timer IC was reduced.