DOI QR코드

DOI QR Code

Dielectric and Piezoelectric Properties of Lead-free (Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3 Ceramics

비납계 (Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3 세라믹의 유전 및 압전 특성

  • Cho J. A. (School of Nano & Advanced Materials Engineering, Changwon National University) ;
  • Kuk M.-H. (School of Nano & Advanced Materials Engineering, Changwon National University) ;
  • Sung Y. S. (School of Nano & Advanced Materials Engineering, Changwon National University) ;
  • Lee S. H. (School of Nano & Advanced Materials Engineering, Changwon National University) ;
  • Song T. K. (School of Nano & Advanced Materials Engineering, Changwon National University) ;
  • Jeong S. J. (Korea Electrotechnology Research Institute, Electric and Magnetic Devices Research group) ;
  • Song J. S. (Korea Electrotechnology Research Institute, Electric and Magnetic Devices Research group) ;
  • Kim M.-H. (School of Nano & Advanced Materials Engineering, Changwon National University)
  • 조정아 (창원대학교 나노 신소재공학부) ;
  • 국민호 (창원대학교 나노신소재공학부) ;
  • 성연수 (창원대학교 나노 신소재공학부) ;
  • 이수호 (창원대학교 나노 신소재공학부) ;
  • 송태권 (창원대학교 나노 신소재공학부) ;
  • 정순종 (한국전기연구원 전자기소자그룹) ;
  • 송재성 (한국전기연구원 전자기소자그룹) ;
  • 김명호 (창원대학교 나노 신소재공학부)
  • Published : 2005.10.01

Abstract

Lead-free $[Bi_{0.5}(Na_{1-x}K_x)_{0.5}TiO_3](x=0\~1.0)$ ceramics were prepared using a solid state reaction method and their structural and electrical characteristics were investigated. X-ray investigations indicated that the rhombohedral-tetragonal morphotropic phase boundary(MPB) of the $[Bi_{0.5}(Na_{1-x}K_x)TiO_3$ ceramics exists in the range of $x=0.16\~0.20$. The optimum values of piezoelectric constant$(d_{33})$, dielectric constant, and electromechanical coupling factor $(k_p)$ were obtained at $x=0.16\~0.20$ of the MPB region.

Keywords

References

  1. A. Sasaki, T. Chiba, Y. Mamiya and E. Otsuki, Jpn. J. Appl. Phys., 38, 5564 (1999) https://doi.org/10.1143/JJAP.38.5564
  2. J. H. Yoo, D. O. Oh, Y. H. Jeong, J. I. Hong, and M. Y. Jung, Mater. Lett., 58, 3831 (2004) https://doi.org/10.1016/j.matlet.2004.08.011
  3. D. Lin, D. Xiao, J. Zhu, P. Yu, H. Yan, and L. Li, Mater. Lett., 58, 615 (2004) https://doi.org/10.1016/S0167-577X(03)00580-9
  4. B. J. Chu, D. R. Chen, G. R. Li and Q. R. Yin, J. Eur. Ceram. Soc., 22, 2115 (2002) https://doi.org/10.1016/S0955-2219(02)00027-4
  5. Q. Xu, S. Chen, W. Chen, S. J. Wu, J. H. Lee, J. Zhou, H. Sun and Y. Li, J. Alloys Comp., 381, 221 (2004) https://doi.org/10.1016/j.jallcom.2004.02.057
  6. Y. Li, W. Chen, J. Zhou, Q. Xu, H. Sun and M. Liao, Ceram. Int., 31, 139 (2005)
  7. H. Nagata and T. Takenaka, J. Eur. Ceram. Soc., 21, 1299 (2001) https://doi.org/10.1016/S0955-2219(01)00005-X
  8. J. R. Gomah-pettry, S. Said, P. Marchet and J. P. Mercurio, J. Eur. Ceram. Soc., 24, 1165 (2004) https://doi.org/10.1016/S0955-2219(03)00473-4
  9. H. Yan, D. Xiao, P, Yu, J. Zhu, D. Lin and G. Li, Mater. Design, 26, 474 (2005) https://doi.org/10.1016/j.matdes.2004.07.010
  10. K. S. Hong, S. Y. Cho and S. E. Park, J. Kor. Ceram. Soc., 32, 915 (1995)
  11. S. Said and J. P. Mercurio, J. Eur. Ceram. Soc., 21, 1333 (2001) https://doi.org/10.1016/S0955-2219(01)00012-7
  12. X. X. Wang, X. G. Tang and H. L. W. Chan, Appl. Phys. Lett., 85, 91 (2004) https://doi.org/10.1063/1.1767592
  13. Z. F. Li, L. Wang, W. L. Zhong, J. C. Li and M. L. Zhao, J. Appl. Phys., 94, 2548 (2003) https://doi.org/10.1063/1.1592290
  14. Ch. H. Yang, Zh. Wang, H. Y. Xu, Zh, H. Sun, F. Y. Jiang, J. P. Zh and J. R. Han, J. Crystal Growth, 262, 304 (2004) https://doi.org/10.1016/j.jcrysgro.2003.10.027
  15. Y. Hou, M. Zhu, L. Hou, J. Liu and J. Tang, J. Crystal Growth, 273, 500 (2005) https://doi.org/10.1016/j.jcrysgro.2004.09.055