• Title/Summary/Keyword: coupling behavior

Search Result 550, Processing Time 0.029 seconds

Investigation on the phonon behavior of MgB2 films via polarized Raman spectra

  • R. P. Putra;J. Y. Oh;G. H. An;H. S. Lee;B. Kang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.26 no.1
    • /
    • pp.14-19
    • /
    • 2024
  • In this study, we explore the anisotropy of electron-phonon coupling (EPC) constant in epitaxially grown MgB2 films on c-axis oriented Al2O3, examining its correlation with the critical temperature (Tc) and local structural disorder assessed through polarized Raman scattering. Analysis of the polarized Raman spectra reveals angle-dependent variations in the intensity of the phonon spectra. The Raman active mode originating from the boron plane, along with two additional phonon modes from the phonon density of states (PDOS) induced by lattice distortion, was distinctly observed. Persistent impurity scattering, likely attributed to oxygen diffusion, was noted at consistent frequencies across all measurement angles. The EPC values derived from the primary Raman active phonon do not significantly vary with changing observation angles, followed by that the Tc values calculated using the Allen and Dynes formula remain relatively constant across all polarization angles. Although the E2g phonon mode plays a crucial role in the EPC mechanism, the determination of Tc values in MgB2 involves not only electron-E2g coupling but also contributions from other phonon modes.

A Study on the Characteristics of Local Corrosion for Gas Absorption Refrigeration and Hot Water Systems in LiBr-$H_2O$ Working Fluids (LiBr작동유체 중에서 가스흡수식 냉온수기의 국부부식 특성에 관한 연구)

  • Uh- Joh Lim;Ki-Cheol Jeong;Byoung-Du Yun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.714-720
    • /
    • 2003
  • Due to the electric power shortage in summer season and regulation of freon refrigerant, the application of gas absorption refrigeration and hot water systems are considerably increasing trend. But, this system consists of condenser, heat exchanger, supply pipe and radiator etc. which are easily corroded by acidity and dissolved oxygen and gases. In result, this system occurs scale attachment and corrosion damage like pitting and crevice corrosion. In this study, electrochemical polarization test of heat exchanger tubing material (copper, aluminium brass, 30% cupronickel(30% Cu-Ni)) was carried out in 60% lithium bromide solution at $95^{\circ}C$. As a result of polarization test, corrosion behavior by impressed potential and local corrosion. such as galvanic corrosion, pitting corrosion behavior, of tubing materials was investigated. The main results obtained are as follows: (1) The effect of pitting and crevice corrosion control of 30% cupronickel in 60% LiBr solution at $95^{\circ}C$ is very excellent. (2) Dissimilar metal corrosion of 30% cupronickel coupling to aluminium bronze is the most sensitive. (3) Current density behavior of tube materials by impressed potential is high in order of copper > aluminium brass > 30% cupronickel.

Nonlinear 3-D behavior of shear-wall dominant RC building structures

  • Balkaya, Can;Schnobrich, W.C.
    • Structural Engineering and Mechanics
    • /
    • v.1 no.1
    • /
    • pp.1-16
    • /
    • 1993
  • The behavior of shear-wall dominant, low-rise, multistory reinforced concrete building structures is investigated. Because there are no beams or columns and the slab and wall thicknesses are approximately equal, available codes give little information relative to design for gravity and lateral loads. Items which effect the analysis of shear-wall dominant building structures, i.e., material nonlinearity including rotating crack capability, 3-D behavior, slab-wall interaction, floor flexibilities, stress concentrations around openings, the location and the amount of main discrete reinforcement are investigated. For this purpose 2 and 5 story building structures are modelled. To see the importance of 3-D modelling, the same structures are modelled by both 2-D and 3-D models. Loads are applied first the vertical then lateral loads which are static equivalent earthquake loads. The 3-D models of the structures are loaded in both in the longitudinal and transverse directions. A nonlinear isoparametric plate element with arbitrarily places edge nodes is adapted in order to consider the amount and location of the main reinforcement. Finally the importance of 3-D effects including the T-C coupling between walls are indicated.

Fabrication of Multilayer Ceramic Actuator using Tape Casting Method (Tape casting 법을 이용한 적층형 세라믹 액츄에이터의 제작)

  • Ha, Mun-Su;Lee, Dong-Man;Jeong, Soon-Jong;Kim, In-Sung;Min, Bok-Ki;Song, Jae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.556-560
    • /
    • 2002
  • The rheological characteristics of PNN-PZT ceramics with high electromechanical coupling factor and electricstrictive constant was investigated. Green sheets of piezoelectric PNN-PZT ceramics were made by tape-casting method with controlling the mixing ratio of a dispersant, an organic binder, and a plasticizer. When the dispersant content was 1 wt.%, the slurry showed the best rheological characteristics for tape casting. The amounts of the plasticizer and the binder was simultaneously varied in the ranges of 1.5~18 and 3~9 wt.%, respectively. When both the plasticizer and binder of 6 wt.% mixed in the solution, respectiveley, the highest green density of the sheet was obtained without macrodefects. Multilyered structures of PNN-PZT/Ag-Pd were successfully fabricated using the optimized tape casting condition. The polarization behavior of these actuators seemed to similar to typical electricstrictive polarization behavior. The multilayer ceramic actuator is about $0.6{\times}10^{-3}$ of strain.

  • PDF

A Study on the Nonlinearity of Chaotic Signal by Bispectral Analysis (바이스펙트럼 해석에 의한 카오스 신호의 비선형성에 관한 연구)

  • Lee, Hae-Jin;Lee, Gyeong-Tae;Park, Young-Sun;Cha, Kyung-Joon;Park, Moon-Il;Oh, Jae-Eung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.8
    • /
    • pp.817-825
    • /
    • 2007
  • During thirty years, deterministic chaos has moved center stage in many areas of applied mathematics. One important stimulus for this, particularly in the early 1970s, was work on nonlinear aspects of the dynamics of plant and animal populations. There are many situations, at least to a crude first approximation, by a simple first-order difference equation. Past studies have shown that such equations, even though simple and deterministic, can exhibit a surprising array of dynamical behavior, from stable points, to a bifurcating hierarchy of stable cycles, to apparently random fluctuations. But higher-order spectral analyses of such behavior are usually not considered. Higher-order spectra of a signal contain important information that is not present in its power spectrum. So, if we find the spectral pattern and get information from it, it will be able to be used effectively in so many fields. Hence, this paper uses auto bicoherence and bicoherence residue which are sort of bispectrum. Applying these to behavior of logistic difference equation, which is typical chaotic signal, the phenomenon of phase coupling and the appearance of frequency band can be analyzed. Such information means that bispectral analysis is useful to detect nonlinearity of signal.

Robust inverse identification of piezoelectric and dielectric effective behaviors of a bonded patch to a composite plate

  • Benjeddou, Ayech;Hamdi, Mohsen;Ghanmi, Samir
    • Smart Structures and Systems
    • /
    • v.12 no.5
    • /
    • pp.523-545
    • /
    • 2013
  • Piezoelectric and dielectric behaviors of a piezoceramic patch adhesively centered on a carbon composite plate are identified using a robust multi-objective optimization procedure. For this purpose, the patch piezoelectric stress coupling and blocked dielectric constants are automatically evaluated for a wide frequency range and for the different identifiable behaviors. Latters' symmetry conditions are coded in the design plans serving for response surface methodology-based sensitivity analysis and meta-modeling. The identified constants result from the measured and computed open-circuit frequencies deviations minimization by a genetic algorithm that uses meta-model estimated frequencies. Present investigations show that the bonded piezoceramic patch has effective three-dimensional (3D) orthotropic piezoelectric and dielectric behaviors. Besides, the sensitivity analysis indicates that four constants, from eight, dominate the 3D orthotropic behavior, and that the analyses can be reduced to the electromechanically coupled modes only; therefore, in this case, and if only the dominated parameters are optimized while the others keep their nominal values, the resulting piezoelectric and dielectric behaviors are found to be transverse-isotropic. These results can help designing piezoceramics smart composites for various applications like noise, vibration, shape, and health control.

A Study of Combustion Instability Mode in Dual Swirl Gas Turbine Combustor by PLIF and Chemiluminescence Measurement (PLIF 및 자발광 계측을 이용한 이중선회 가스터빈 연소기에서 연소불안정 모드 연구)

  • Choi, Inchan;Lee, Keeman;Juddoo, Mrinal;Masri, A.R.
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.1
    • /
    • pp.29-38
    • /
    • 2014
  • This paper described an experimental investigations of combustion instability mode in a lean premixed dual swirl combustor for micro-gasturbine system. When such the instability occurs, a strong coupling between pressure oscillations and unsteady heat release excites a self-sustained acoustic wave which results in a loud, annoyed sound and may also lead a structural damage to the combustion chamber. The detailed period of flame behavior and heat release in combustion instability mode have been examined with high speed OH and CH-PLIF system and $CH^*$ chemiluminescence measurement, flame tomography with operated at 10 kHz and 6 kHz each. Experiment results suggest that unstable flame behavior has a specific frequency with 200 Hz and this frequency is accords with about 1/2 sub-harmonic of combustor resonance frequency, not fundamental frequency. This is very interesting phenomenon that have not reported yet from other previous works. Therefore, when a thermo-acoustic instability with Rayleigh criterion occurs, the fact that the period of heat release and flame behavior are different each other was proposed for the first time through this work.

An Investigation on the Aging Properties of NKN Lead-free Piezoelectric Multi-layer Ceramic Actuators (NKN 무연압전 액추에이터의 신뢰성 연구)

  • Chae, Moon-Soon;Lee, Ku-Tak;Koh, Jung-Hyuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.10
    • /
    • pp.803-806
    • /
    • 2011
  • 1 mol% $Li_2O$ excess $0.9(Na_{0.52}K_{0.48})NbO_3-0.1LiTaO_3$ lead-free piezoelectric multilayer ceramic actuators were investigated to determine their aging properties. To reduce the thermal aging behavior, we applied a rectified unipolar electric field of 5 kV/mm to the specimen to accelerate the electric aging behavior. By employing a rectified unipolar electric field for the piezoelectric actuators, we could remove undesirable heating from the relaxation current in the motion of the ferroelectric domain. To accelerate the aging test, the applied electric fields had a frequency of 900 Hz. To have enough time for charging and discharging, we employed an accurate time constant to design the equivalent circuit model for the aging tester. To extract exact aging behavior, we measured the pseudo-piezoelectric coefficient before and after the aging process. We also measured the electro-mechanical coupling coefficient, the frequency-dependent dielectric permittivity, and the impedance to compare with fresh and aged specimen.

A numerical investigation of the tensile behavior of the thread-fixed one-side bolted T-stubs at high temperature

  • You, Yang;Liu, Le;Jin, Xiao;Wang, Peijun;Liu, Fangzhou
    • Steel and Composite Structures
    • /
    • v.45 no.4
    • /
    • pp.605-619
    • /
    • 2022
  • The tensile behavior of the Thread-fixed One-side Bolt (TOB) at high temperatures was studied using the Finite Element Modeling (FEM) to explore the structural responses that could not be measured in tests. The accuracy of the FEM was verified using the test results from the failure mode, load-displacement curve as well as yielding load. Three typical failure modes of TOB connected T-stubs were observed, which were the Flange Yielding (FY), the Bolt Failure (BF) and the Coupling Failure mode (CF). The influence of the flange thickness tb and the temperature θ on the tensile behavior of the T-stub were discussed. The initial stiffness and the yielding load decreased with the increase of the temperature. The T-stubs almost lost their resistance when the temperature exceeded 700℃. The failure modes of T-stubs were mainly decided by the flange thickness, which relates to the anchorage of the hole threads and the bending resistance of flange. The failure mode could also be changed by the high temperature. Design equations in EN 1993-1-8 were modified and verified by the FEM results. The results showed that these equations could predict the failure mode and the yielding load at different temperatures with satisfactory accuracy.

Hydroelastic Responses of Floating Structure by Modeling Dimensions (부유구조물의 모델링 차원에 따른 유탄성 응답)

  • Hong, Sanghyun;Hwang, Woongik;Lee, Jong Seh
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.3
    • /
    • pp.285-292
    • /
    • 2016
  • In this study, FE-BE direct coupling methods of 1D and 2D problems are considered for the pontoon-type floating structure and the difference of the modeling dimensions is investigated for the hydroelastic response. The modeling dimensions are defined as the 1D problem consisting 1D beam-2D fluid coupling and the 2D problem consisting 2D plate-3D fluid coupling with zero-draft assumption. For case studies, hydroelastic responses of the 1D Problem are compared to those of the 2D Problem for a wide range of aspect ratio and regular waves. It is shown that the effects of the elastic behavior are increased by decreasing the incident wavelength, whereas the effects of the rigid behavior are increased by increasing the incident wavelength. In 2D problem, the incident wave angle can be considered, and slightly more accurate results can be obtained, but the computational efficiency is lower. On the other hand, in 1D problem with plate-strip condition, the incident wave angle cannot be considered, but when the aspect ratio is large, the overall responses can be analyzed through a simplified model, and the computational efficiency can be improved.