• 제목/요약/키워드: coupled response

검색결과 997건 처리시간 0.025초

기어-시스템의 동특성에 대한 연구 (A Study on Dynamic Characteristics of Gear-System)

  • 이형우;박노길
    • 한국정밀공학회지
    • /
    • 제22권11호
    • /
    • pp.111-117
    • /
    • 2005
  • The vibration problems associated with gear coupled rotors have been the focus of much engineering work. These systems are complex and difficult to analyze in that they have the problems associated with conventional rotors plus those additional problems associated with the gear couplings. This paper examines the problems peculiar to the gear mesh. Because of the meshing action of gears, the elasticity of the gear teeth introduces time-varying stiffness coefficients into the governing equations of motion. This means that system response must be thought of in terms of Mathieu-type equations, where multiple-frequency response occur due to the periodic coefficients. The meshing action of the gears also couples the lateral and torsional gear motions. Gear errors, such as tooth profile and spacing errors, produce forces and torque that excite the system at multiple frequencies, some of which are much higher than shaft rotational speed. To investigate how to the time-varying stiffness in the gear teeth and the gear errors act one the dynamic response of the gear coupled rotors, a three-dimensional dynamic model with lateral-tortional oscillation is developed. The harmonic balance technique is employed to solve this mathieu-type problem.

Static Aeroelastic Response of Wing-Structures Accounting for In-Plane Cross-Section Deformation

  • Varello, Alberto;Lamberti, Alessandro;Carrera, Erasmo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제14권4호
    • /
    • pp.310-323
    • /
    • 2013
  • In this paper, the aeroelastic static response of flexible wings with arbitrary cross-section geometry via a coupled CUF-XFLR5 approach is presented. Refined structural one-dimensional (1D) models, with a variable order of expansion for the displacement field, are developed on the basis of the Carrera Unified Formulation (CUF), taking into account cross-sectional deformability. A three-dimensional (3D) Panel Method is employed for the aerodynamic analysis, providing more accuracy with respect to the Vortex Lattice Method (VLM). A straight wing with an airfoil cross-section is modeled as a clamped beam, by means of the finite element method (FEM). Numerical results present the variation of wing aerodynamic parameters, and the equilibrium aeroelastic response is evaluated in terms of displacements and in-plane cross-section deformation. Aeroelastic coupled analyses are based on an iterative procedure, as well as a linear coupling approach for different free stream velocities. A convergent trend of displacements and aerodynamic coefficients is achieved as the structural model accuracy increases. Comparisons with 3D finite element solutions prove that an accurate description of the in-plane cross-section deformation is provided by the proposed 1D CUF model, through a significant reduction in computational cost.

Numerical and experimental study on dynamic response of moored spar-type scale platform for floating offshore wind turbine

  • Choi, E.Y.;Cho, J.R.;Cho, Y.U.;Jeong, W.B.;Lee, S.B.;Hong, S.P.;Chun, H.H.
    • Structural Engineering and Mechanics
    • /
    • 제54권5호
    • /
    • pp.909-922
    • /
    • 2015
  • The dynamic response and the mooring line tension of a 1/75 scale model of spar-type platform for 2.5 MW floating offshore wind turbine subject to one-dimensional regular harmonic wave are investigated numerically and verified by experiment. The upper part of wind turbine which is composed of three rotor blades, hub and nacelle is modeled as a lumped mass the scale model and three mooring lines are pre-tensioned by means of linear springs. The coupled fluid-rigid body interaction is numerically simulated by a coupled FEM-cable dynamics code, while the experiment is performed in a wave tank with the specially-designed vision and data acquisition system. The time responses of surge, heave and pitch motions of the scale platform and the mooring line tensions are obtained numerically and the frequency domain-converted RAOs are compared with the experiment.

인접건물의 준능동 퍼지제어를 위한 유전자알고리즘 기반 다목적 최적설계 (Multi-objective Optimal Design using Genetic Algorithm for Semi-active Fuzzy Control of Adjacent Buildings)

  • 김현수
    • 한국산학기술학회논문지
    • /
    • 제17권1호
    • /
    • pp.219-224
    • /
    • 2016
  • 본 연구에서는 지진하중을 받는 인접한 건물의 진동제어를 위한 준능동 제어장치의 제어성능을 검토하였다. 준능동 제어장치로는 MR 감쇠기를 사용하였다. MR 감쇠기로 연결된 인접한 건물을 효과적으로 제어하기 위하여 퍼지제어알고리즘을 사용하였다. MR 감쇠기로 연결된 인접한 건물의 제어시 한쪽 건물의 응답을 저감시키는 것은 다른 한 쪽 건물의 응답을 증가시키는 효과를 가져온다. 따라서 연결된 건물의 제어는 서로 상충되는 특성이 있기 때문에 다목적 최적화문제로 귀결된다. 따라서 본 연구에서는 다목적 유전자알고리즘을 사용하여 MR 감쇠기를 제어하는 퍼지제어알고리즘을 최적화하였다. 수치해석을 통하여 준능동 MR 감쇠기를 이용한 인접건물의 연결제어효과를 검토하였고 매우 우수한 성능을 나타내는 것을 확인하였다.

개별 공진기의 EM 시뮬레이션에 기초한 새로운 직접결합 대역여파기 설계 방법 (A Novel Design Method of Direct Coupled BPF(Band Pass Filter) Based on EM Simulation of Individual Resonator)

  • 양승식;염경환
    • 한국전자파학회논문지
    • /
    • 제20권4호
    • /
    • pp.333-343
    • /
    • 2009
  • 이상적인 전송선을 가정하고 도출된 여파기 설계 공식에 의하여 대역여파기를 설계할 경우, 제작된 여파기는 중심 주파수의 이동 및 주파수 특성의 왜곡을 발생시키며, 주파수가 높아질수록 심각한 문제를 야기한다. 이를 해결하기 위하여 본 논문에서는 개별 공진기의 EM(Electro-Magnetic) 시뮬레이션을 기초로 한 새로운 여파기 설계 방법을 제안하였다. 이 방법은 여파기를 개별 공진기로 분리하고, EM 시뮬레이션을 통해 개별 공진기의 리액턴스(reactance) 기울기 및 인버터 상수와 같은 여파기 설계 파라미터를 추출한 후, 이것이 인버터와 리액턴스 기울기로 구성된 인버터-기준형 설계치와 같도록 조정하는 것이다. 이와 같이 조정된 공진기를 조합하여 구성된 여파기는 별도의 조정 없이 목적한 설계치를 만족하게 된다. EM 시뮬레이션 시 이미 선로의 분산(dispersion) 및 불연속(discontinuity) 효과를 고려하였기 때문에 더 이상의 조정이 필요 없으며, 이 방법은 인버터-기준형으로 환원되는 대부분의 여파기에 적용 가능하다. 본 논문에서는 5단 SIR 여파기를 예로 들어 여파기 설계의 전반적인 과정을 설명하였고, 평행결합선로 여파기(parallel coupled line filter) 및 hair-pin 여파기에 확장 적용한 예를 보여 이 방법의 타당성을 보였다.

A coupled model simulation of the Last Glacial Maximum

  • 김성중
    • 한국제4기학회:학술대회논문집
    • /
    • 한국제4기학회 2004년도 추계학술대회
    • /
    • pp.37-43
    • /
    • 2004
  • The response of the CCCma coupled climate model to the imposition of LGM conditions is investigated. The global mean SAT and SST decrease by about $10^{\circ}C$ and $5.6^{\circ}C$ in the coupled model. Tropical SST decreases by $6.5^{\circ}C$, whereas CLIMAP reconstructions suggest that the tropics cool by only about $1.7^{\circ}C$, although the larger tropical cooling is consistent with the more recent proxy estimates. With the incorporation of a full ocean component, the coupled model gives a realistic spatial SST pattern, capturing features associated with ocean dynamics that are seen in the CLIMAP reconstructions. The larger decrease of the surface temperature in the model is associated with a reduction in global precipitation rate (about 15%). The tropical Pacific warm pool retreats to the west and a mean La $Ni\tilde{n}a$-like response is simulated with less precipitation over the central Pacific and more in the western tropical Pacific. The more arid ocean climate in the LGM results in an increase in SSS almost everywhere. This is particularly the case in the Arctic Ocean where large SSS increase is due to a decrease in river discharge to the Arctic Ocean associated with the accumulation of snow over the ice sheet, but in the North Atlantic by contrast SSS decreases markedly. This remarkable reduction of SSS in the North Atlantic is attributed to an increase in fresh water supply by an increase in discharges from the Mississippi and Amazon rivers and an increase in P-E over the North Atlantic ocean itself. The discharges increase in association with the wetter LGM climate south of the Laurentide ice sheet and in South America. The fresh water capping of the northern North Atlantic results in a marked reduction of deep convection and consequently a marked weakening of the North Atlantic overturning circulation. In the LGM, the maximum overturning stream function associated with the NADW formation decreases by about 60% relative to the control run, while in the Southern Ocean, oceanic convection is stronger in the LGM due to reduced stratification associated with an increase in SSS and a decrease in SST and the overturning stream function associated with the formation of AABW and the outflow increases substantially.

  • PDF

The effectiveness of position of coupled beam with respect to the floor level

  • Yasser Abdal Shafey, Gamal;Lamiaa K., Idriss
    • Coupled systems mechanics
    • /
    • 제11권6호
    • /
    • pp.557-586
    • /
    • 2022
  • In spite of extensive testing of the individual shear wall and the coupling beam (CB), numerical and experimental researches on the seismic behavior of CSW are insufficient. As far as we know, no previous research has investigated the affectations of position of CB regarding to the slab level (SL). So, the investigation aims to enhance an overarching framework to examine the consequence of connection positions between CB and SL. And, three cases have been created. One is composed of the floor slab (FS) at the top of the CB (FSTCB); the second is created with the FS within the panel depth (FSWCB), and the third is employed with the FS at the bottom of the CB (FSLCB). And, FEA is used to demonstrate the consequences of various CB positions with regard to the SL. Furthermore, the main measurements of structure response that have been investigated are deformation, shear, and moment in a coupled beam. Additionally, wall elements are used to simulate CB. In addition, ABAQUS software was used to figure out the strain distribution, shear stress for four stories to further understand the implications of slab position cases on the coupled beam rigidity. Overall, the findings show that the position of the rigid linkage among the CB and the FS can affect the behavior of the structures under seismic loads. For all structural heights (4, 8, 12 stories), the straining actions in FSWCB and FSLCB were less than those in FSTCB. And, the increases in displacement time history response for FSWCB are around 16.1-81.8%, 31.4-34.7%, and 17.5% of FSTCB.

수리역학 연계해석을 이용한 누수로 인한 터널 구조물 및 지반 거동의 분석 (Investigation on Water Leakage-Induced Tunnel Structure and Ground Responses Using Coupled Hydro-Mechanical Analysis)

  • 박도현
    • 터널과지하공간
    • /
    • 제33권4호
    • /
    • pp.265-280
    • /
    • 2023
  • 터널누수는 주변지반의 응력 및 간극수압을 변화시켜 터널 안정성 및 지반변형에 영향을 미칠 수 있는 결함요소이다. 장기간 또는 큰 규모의 누수발생은 터널 라이닝의 불안정성 및 지표침하와 같은 터널 구조물 및 주변지반 환경에 손상을 일으킬 수 있다. 본 연구에서는 누수발생 시 터널의 구조 안정성 및 지반거동에 미치는 영향을 수치해석적으로 분석하였다. 고려된 터널은 내부로 주변 지하수의 유입을 허용하지 않는 비배수 조건으로 가정하였고 터널 완공 후 라이닝에서 누수가 발생하는 것으로 설정하였다. 누수로 인한 터널 구조물 및 지반의 거동을 모사하기 위해 수리역학 연계해석이 수행되었으며 파이썬으로 개발된 TOUGH-FLAC 시뮬레이터가 사용되었다. 누수 발생량과 누수위치를 변화시켜 수치모사가 수행되었으며 수리역학 해석을 위한 연계항들이 복합거동 결과에 미치는 영향을 조사하였다.

Aeroelastic Response of an Airfoil-Flap System Exposed to Time-Dependent Disturbances

  • Shim, Jae-Hong;Sungsoo Na;Chung, Chan-Hun
    • Journal of Mechanical Science and Technology
    • /
    • 제18권4호
    • /
    • pp.560-572
    • /
    • 2004
  • Aeroelastic response and control of airfoil-flap system exposed to sonic-boom, blast and gust loads in an incompressible subsonic flowfield are addressed. Analytical analysis and pertinent numerical simulations of the aeroelastic response of 3-DOF airfoil featuring plunging-pitching-flapping coupled motion subjected to gust and explosive pressures in terms of important characteristic parameters specifying configuration envelope are presented. The comparisons of uncontrolled aeroelastic response with controlled one of the wing obtained by feedback control methodology are supplied, which is implemented through the flap torque to suppress the flutter instability and enhance the subcritical aeroelastic response to time-dependent excitations.

Geometrical dimensions effects on the seismic response of concrete gravity dams

  • Sevim, Baris
    • Advances in concrete construction
    • /
    • 제6권3호
    • /
    • pp.269-283
    • /
    • 2018
  • This study presents the effects of geometrical dimensions of concrete gravity dams on the seismic response considering different base width/dam height (L/H) ratios. In the study, a concrete gravity dam with the height of 200 m is selected and finite element models of the dam are constituted including five different L/H ratios such as 0.25, 0.5, 0.75, 1.00, 1.25. All dams are modeled in ANSYS software considering dam-reservoir-foundation interaction. 1989 Loma Prieta earthquake records are applied to models in upstream-downstream direction and linear time history analyses are performed. Dynamic equilibrium equations of motions obtained from the finite element models of the coupled systems are solved by using Newmark time integration algorithm. The seismic response of the models is evaluated from analyses presenting natural frequencies, mode shapes, displacements and principal stresses. The results show that the L/H ratios considerably affect the seismic response of gravity dams. Also, the model where L/H ratio is 1.00 has more desirable results and most appropriate representation of the seismic response of gravity dams.