• Title/Summary/Keyword: coupled motion analysis

Search Result 328, Processing Time 0.031 seconds

Eigenvalue Analysis of a Coupled Tower-blade System Considering the Shear Forces of a Nacelle (너셀부 전단력을 고려한 타워-블레이드 연성계의 고유치 해석)

  • Kim, Min-Ju;Kang, Nam-Cheol
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.6
    • /
    • pp.514-520
    • /
    • 2011
  • Eigenvalue analysis of a wind turbine system was investigated analytically. It is derived that the equations of motion of a tower and a blade are coupled by shear forces inter-connected by boundary conditions. The eigenvalues of the coupled system was calculated using Galerkin method and it is found that the system becomes unstable when the tower and blade modes are coalesced. Further, parameter studies for the eigenvalues were performed with respect to the rotating speed of a blade, nacelle mass, blade and tower densities.

Vibration Analysis of Two Annular Plates Coupled with a Fluid (유체로 연성된 두 환형평판의 진동해석)

  • Jeong, Kyeong-Hoon;Kim, Jong-In
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.906-910
    • /
    • 2004
  • An analytical method for the free vibration of two annular plates coupled with water was developed by the Rayleigh-Ritz method. The two plates with unequal thickness are clamped along a rigid cylindrical vessel wall. It is assumed that the fluid bounded by a rigid cylindrical vessel is incompressible and non-viscous. The wet mode shape of the annular plates Is assumed as a combination of the dry mode shapes of the plates. The fluid motion is described by using the fluid displacement potential and determined by using the compatibility conditions along the fluid interface with the plate. Minimizing the Rayleigh quotient based on the energy conservation gives an eigenvalue problem. It is found that the theoretical results can predict well the fluid-coupled natural frequencies comparing with the finite element analysis result.

  • PDF

Energetics of In-plane Motions in Coupled Plate Structures

  • Park, Young-Ho;Park, Chang Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.428-435
    • /
    • 2020
  • Energy flow analysis (EFA) has been used to predict the frequency-averaged vibrational responses of built-up structures at high frequencies. In this study, the frequency-averaged exact energetics of the in-plane motions of the plate were derived for the first time by solving coupled partial differential equations. To verify the EFA for the in-plane waves of the plate, numerical analyses were performed on various coupled plate structures. The prediction results of the EFA for coupled plate structures were shown to be accurate approximations of the frequency-averaged exact energetics, which were obtained from classical displacement solutions. The accuracy of the results predicted via the EFA increased with an increase in the modal density, regardless of various structural parameters. Therefore, EFA is an effective technique for predicting the frequency-averaged vibrational responses of built-up structures in the high frequency range.

Inclined cable-systems in suspended bridges for restricting dynamic deformations

  • Raftoyiannis, Ioannis;Konstantakopoulos, Theodore;Michaltsos, George
    • Coupled systems mechanics
    • /
    • v.6 no.4
    • /
    • pp.377-398
    • /
    • 2017
  • The present paper deals with the influence of the inclination of cables' system on the decrease of the lateral-torsional motion because of dynamic loadings. For this goal, a mathematical model is proposed. A 3-D analysis is performed for the solution of the bridge model. The theoretical formulation is based on a continuum approach, which has been widely used in the literature to analyze such bridges. The resulting uncoupled equations of motion are solved using the Laplace Transformation, while the case of the coupled motion is solved through the use of the potential energy. Finally, characteristic examples are presented and useful results are obtained.

A Study on Proportional and Derivative Control of Fluid Film Journal Bearings (유체 윤활 베어링의 비례 및 미분 제어에 관한 연구)

  • 노병후;김경웅
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.212-217
    • /
    • 2001
  • This paper presents the stability characteristics of a rotor-bearing system supported by actively controlled hydrodynamic journal bearing. The proportional and derivative controls including coupled motion are adopted for the control algorithm to control the hydrodynamic journal bearing with a circumferentially groove. Also, the cavitation algorithm implementing the Jakobsson-Floberg-Olsson boundary condition is adopted to predict cavitation regions in the fluid film more accurately than conventional analysis which uses the Reynolds condition. The stability characteristics are investigated with the Routh-Hurwitz criteria using the linear dynamic coefficients which are obtained from the perturbation method. The stability characteristics of the rotor-bearing system supported by active controlled hydrodynamic journal bearing are investigated for various control gain. It is found that the speed at onset of instability is increased for both proportional and derivative control of the bearing, and the proportional and derivative control of coupled motion is more effective than proportional and derivative control of uncoupled motion.

  • PDF

Dynamic Analysis of Rectangular Liquid Storage Structures Excited by Horizontal and Vertical Ground Motions (수평 및 수직 지반운동을 받는 직사각형 유체 저장 구조물의 동적 해석)

  • Park, Jang-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.3 s.67
    • /
    • pp.108-117
    • /
    • 2004
  • Dynamic analysis method is Presented for analyzing rectangular liquid storage structures excited by horizontal and vertical ground motions. The irrotational motion of invicid and incompressible ideal fluid in rigid rectangular liquid storage structures subjected to horizontal and vertical ground motions and the motion of fluid induced by structural deformation are expressed by analytic solutions. Analysis methods are obtained by applying analytic solutions of the fluid motion to finite element equation of the structural motion. The fluid-structure interaction effect is reflected into the coupled equation as added fluid mass matrix. The free surface sloshing motion, hydrodynamic pressure acting on the wall and structural behavior due to horizontal and vertical ground motions are obtained by the presented method.

Vibration Analysis of Three-Dimensional Piping System by Transfer Matrix Method (전달행렬법을 이용한 3차원 파이프 계의 진동해석)

  • 이동명
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.6
    • /
    • pp.110-116
    • /
    • 1998
  • For the vibration analysis of 3-dimensional piping system containing fluid flow, a transfer matrix method is presented. The fluid velocity and pressure were considered, that coupled to longitudinal and flexural vibrations. Transfer matrices and point matrices were derived from direct solutions of the differential equations of motion of pipe conveying fluids, and the variations of natural frequency with flow velocity for 3-dimensional piping system were investigated.

  • PDF

An ALE Finite Element Method for Baffled Fuel Container in Yawing Motion

  • Cho, Jin-Rae;Lee, Hong-Woo;Yoo, Wan-Suk;Kim, Min-Jeong
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.460-470
    • /
    • 2004
  • A computational analysis of engineering problems with moving domain or/and boundary according to either Lagrangian or Eulerian approach may encounter inherent numerical difficulties, the extreme mesh distortion in the former and the material boundary indistinctness in the latter. In order to overcome such defects in classical numerical approaches, the ALE(arbitrary Lagrangian Eulerian) method is widely being adopted in which the finite element mesh moves with arbitrary velocity. This paper is concerned with the ALE finite element formulation, aiming at the dynamic response analysis of baffled fuel-storage container in yawing motion, for which the coupled time integration scheme, the remeshing and smoothing algorithm and the mesh velocity determination are addressed. Numerical simulation illustrating theoretical works is also presented.

Influence of lateral motion of cable stays on cable-stayed bridges

  • Wang, P.H.;Liu, M.Y.;Huang, Y.T.;Lin, L.C.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.6
    • /
    • pp.719-738
    • /
    • 2010
  • The aim of this paper concerns with the nonlinear analysis of cable-stayed bridges including the vibration effect of cable stays. Two models for the cable stay system are built up in the study. One is the OECS (one element cable system) model in which one single element per cable stay is used and the other is MECS (multi-elements cable system) model, where multi-elements per cable stay are used. A finite element computation procedure has been set up for the nonlinear analysis of such kind of structures. For shape finding of the cable-stayed bridge with MECS model, an efficient computation procedure is presented by using the two-loop iteration method (equilibrium iteration and shape iteration) with help of the catenary function method to discretize each single cable stay. After the convergent initial shape of the bridge is found, further analysis can then be performed. The structural behaviors of cable-stayed bridges influenced by the cable lateral motion will be examined here detailedly, such as the static deflection, the natural frequencies and modes, and the dynamic responses induced by seismic loading. The results show that the MECS model offers the real shape of cable stays in the initial shape, and all the natural frequencies and modes of the bridge including global modes and local modes. The global mode of the bridge consists of coupled girder, tower and cable stays motion and is a coupled mode, while the local mode exhibits only the motion of cable stays and is uncoupled with girder and tower. The OECS model can only offers global mode of tower and girder without any motion of cable stays, because each cable stay is represented by a single straight cable (or truss) element. In the nonlinear seismic analysis, only the MECS model can offer the lateral displacement response of cable stays and the axial force variation in cable stays. The responses of towers and girders of the bridge determined by both OECS- and MECS-models have no great difference.

Hull/Mooring/Riser Coupled Dynamic Analysis of a Turret-Moored FPSO Compared with OTRC Experiment

  • Kim Young-Bok;Kim Moo-Hyun
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.3
    • /
    • pp.26-39
    • /
    • 2004
  • A vessel/mooring/riser coupled dynamic analysis program in time domain is developed for the global motion simulation of a turret-moored, tanker based FPSO designed for 6000-ft water depth. The vessel global motions and mooring tension are simulated for the non-parallel wind-wave-current 100-year hurricane condition in the Gulf of Mexico. The wind and current forces and moments are estimated from the OCIMF empirical data base for the given loading condition. The numerical results are compared with the OTRC(Offshore Technology Research Center: Model Basin for Offshore Platforms in Texas A&M University) 1:60 model-testing results with truncated mooring system. The system's stiffness and line tension as well as natural periods and damping obtained from the OTRC measurement are checked through numerically simulated static-offset and free-decay tests. The global vessel motion simulations in the hurricane condition were conducted by varying lateral and longitudinal hull drag coefficients, different mooring and riser set up, and wind-exposed areas to better understand the sensitivity of the FPSO responses against empirical parameters. It is particularly stressed that the dynamic mooring tension can be greatly underestimated when truncated mooring system is used.