• Title/Summary/Keyword: coupled beam system

Search Result 198, Processing Time 0.025 seconds

Analysis of Vibration for the Pre-twisted Beam Considering the Effect of Rotary Inertia Using the Transfer Matrix Mathod (전달행렬법을 이용하여 비틀림 각과 회전관성을 고려한 보의 진동해석)

  • Lee, Jung Youn
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.2
    • /
    • pp.217-224
    • /
    • 2016
  • In this study, a transfer matrix method (TMM) for a twisted uniform beam considering the effect of rotary inertia is developed, and the differential equation and the displacements and forces are derived from Hamilton's principle. The particular transfer matrix is derived by applying the distributed mass and transcendental function while using a local coordinate system. In addition, the results obtained from this method are independent for a number of subdivided elements, and this method can determine the exact solutions for the free vibration characteristics of a twisted uniform Rayleigh beam. To validate the accuracy of the proposed TMM, the computed results are compared with those reported in the existing literature, and the comparison results indicate notably good agreement. In addition, the method is used to investigate the effects of rotary inertia for a twisted beam.

Control Performance of Friction Dampers Using Flexural Behavior of RC Shear Wall System (전단벽식 구조의 휨거동을 이용한 마찰감쇠기의 제어성능)

  • Chung, Hee-San;Moon, Byoung-Wook;Park, Ji-Hun;Lee, Sung-Kyung;Min, Kyung-Won;Byeon, Ji-Seok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.8
    • /
    • pp.856-863
    • /
    • 2008
  • High-rise apartments of shear wall system are governed by flexural behavior like a cantilever beam. Installation of the damper-brace system in a structure governed by flexural behavior is not suitable. Because of relatively high lateral stiffness of the shear wall, a load is not concentrate on the brace and the brace cannot perform a role as a damping device. In this paper, a friction damper applying flexibility of shear wall is proposed in order to reduce the deformation of a structure. To evaluate performance of the proposed friction damper, nonlinear time history analysis is executed by SeismoStruct analysis program and MVLEM(multi vertical linear element model) be used for simulating flexural behavior of the shear wall. It is found that control performance of the proposed friction damper is superior to one of a coupled wall with rigid beam. In conclusion, this study verified that the optimal control performance of the proposed friction damper is equal to 45 % of the maximum shear force inducing in middle-floor beam with rigid beam.

Probabilistic free vibration analysis of Goland wing

  • Kumar, Sandeep;Onkar, Amit Kumar;Manjuprasad, M.
    • International Journal of Aerospace System Engineering
    • /
    • v.6 no.2
    • /
    • pp.1-10
    • /
    • 2019
  • In this paper, the probabilistic free vibration analysis of a geometrically coupled cantilever wing with uncertain material properties is carried out using stochastic finite element (SFEM) based on first order perturbation technique. Here, both stiffness and damping of the system are considered as random parameters. The bending and torsional rigidities are assumed as spatially varying second order Gaussian random fields and represented by Karhunen Loeve (K-L) expansion. Here, the expected value, standard deviation, and probability distribution of random natural frequencies and damping ratios are computed. The results obtained from the present approach are also compared with Monte Carlo simulations (MCS). The results show that the uncertain bending rigidity has more influence on the damping ratio and frequency of modes 1 and 3 while uncertain torsional rigidity has more influence on the damping ratio and frequency of modes 2 and 3.

Development of Inductively Coupled Plasma Gas Ion Source for Focused Ion Beam (유도결합형 플라즈마 소스를 이용한 집속 이온빔용 가스 이온원 개발)

  • Lee, Seung-Hun;Kim, Do-Geun;Kang, Jae-Wook;Kim, Tae-Gon;Min, Byung-Kwon;Kim, Jong-Kuk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.1
    • /
    • pp.19-23
    • /
    • 2011
  • Recently, focused ion beam (FIB) applications have been investigated for the modification of VLSI circuit, the MEMS processing, and the localized ion doping, A multi aperture FIB system has been introduced as the demands of FIB applications for high speed and large area processing increase. A liquid metal ion source has problems, a large angular divergence and a metal contamination into a substrate. In this study, a gas ion source was introduced to replace a liquid metal ion source. The gas ion source generated inductively coupled plasma (ICP) in a quartz tube (diameter: 45 mm). Ar gas fed into the quartz was ionized by a 2 turned radio frequency antenna. The Ar ions were extracted by 2 extraction grids. The maximum extraction voltage was 10 kV. A numerical simulation was used to optimize the design of extraction grids and to predict an ion trajectory. As a result, the maximum ion current density was 38 $mA/cm^2$ and the spread of ion energy was 1.6 % for the extraction voltage.

유한요소-경계요소 조합에 의한 지반-말뚝 상호작용계의 주파수 응답해석

  • 김민규;조석호;임윤목;김문겸
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.443-450
    • /
    • 2000
  • In this study a numerical method for soil-pile interaction analysis buried in multi-layered half planes is presented in frequency domain using FE-BE coupling. The total soil-pile interaction system is divided into two parts so called far field and near field beam elements are used for modeling a pile and coupled with plain strain elements for soil modeling. Boundary element formulation using the multi-layered dynamic fundamental solution is adopted to the far field and coupled with near field modeled by finite elements. In order to verify the proposed soil-pile interaction analysis method the dynamic responses of a pile on multi-layered dynamic fundamental solution is adopted to the far field and coupled with near field modeled by finite elements. In order to verify the proposed soil-pile interaction analysis method the dynamic responses of a pile on multi-layered half-planes are performed and compared with experiment results. Through this developed method the dynamic response analysis of a pile buried in multi-layered half planes can be calculated effectively in frequency domain.

  • PDF

Investigation of Vibration Characteristics using Experimental Statistical Energy Analysis(ESEA) (시험적인 통계적 에너지 기법(ESEA)을 적용한 진동 전달 특성 연구)

  • 이화수;우관제;김종년;이태욱
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.113-118
    • /
    • 2002
  • Vibrational characteristics of coupled beam & plate system are considered on simple system, which consists of plates(2-subsystem) and beams(4-subsystem), using experimental statistical energy analysis(ESEA). First, damping and coupling loss factors of the system are determined by power injection method (PIM). Then, energy distribution of all the subsystem is estimated from the power balance equation. Finally, these quantities are compared with measured energy. The correlation of measured and estimated results for the sample problem is reasonably good.

  • PDF

HYDROELASTIC VIBRATION ANALYSIS OF TWO FLEXIBLE RECTANGULAR PLATES PARTIALLY COUPLED WITH A LIQUID

  • Jeong, Kyeong-Hoon;Kim, Jong-Wook
    • Nuclear Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.335-346
    • /
    • 2009
  • This paper deals with a hydroelastic vibration analysis of two rectangular plates partially coupled with a liquid, which is bounded by two plates and two rigid side walls. The wet displacement of each plate is assumed to be a combination of the modal functions of a dry uniform beam with a clamped boundary condition. As the liquid is assumed to be an ideal liquid, the displacement potential satisfying the Laplace equation is determined so that the liquid boundary conditions can meet the requirements at the rigid surfaces and the free liquid surface. The wet dynamic modal functions of each plate are expanded by using the finite Fourier transform to obtain an appropriate form of the compatibility requirement along the contacting surfaces between the plates and the liquid. The liquid-coupled natural frequencies of the plates are derived by using the Rayleigh-Ritz method. Finite element analyses using commercial software are carried out to verify the proposed theory. It is observed that the theoretical method agrees excellently with the three-dimensional finite element analyses results. The effects of the liquid depth and the liquid thickness on the normalized natural frequencies are investigated to identify the dynamic characteristics of the liquid coupled system.

Modeling of the friction in the tool-workpiece system in diamond burnishing process

  • Maximov, J.T.;Anchev, A.P.;Duncheva, G.V.
    • Coupled systems mechanics
    • /
    • v.4 no.4
    • /
    • pp.279-295
    • /
    • 2015
  • The article presents a theoretical-experimental approach developed for modeling the coefficient of sliding friction in the dynamic system tool-workpiece in slide diamond burnishing of low-alloy unhardened steels. The experimental setup, implemented on conventional lathe, includes a specially designed device, with a straight cantilever beam as body. The beam is simultaneously loaded by bending (from transverse slide friction force) and compression (from longitudinal burnishing force), which is a reason for geometrical nonlinearity. A method, based on the idea of separation of the variables (time and metric) before establishing the differential equation of motion, has been applied for dynamic modeling of the beam elastic curve. Between the longitudinal (burnishing force) and transverse (slide friction force) forces exists a correlation defined by Coulomb's law of sliding friction. On this basis, an analytical relationship between the beam deflection and the sought friction coefficient has been obtained. In order to measure the deflection of the beam, strain gauges connected in a "full bridge" type of circuit are used. A flexible adhesive is selected, which provides an opportunity for dynamic measurements through the constructed measuring system. The signal is proportional to the beam deflection and is fed to the analog input of USB DAQ board, from where the signal enters in a purposely created virtual instrument which is developed by means of Labview. The basic characteristic of the virtual instrument is the ability to record and visualize in a real time the measured deflection. The signal sampling frequency is chosen in accordance with Nyquist-Shannon sampling theorem. In order to obtain a regression model of the friction coefficient with the participation of the diamond burnishing process parameters, an experimental design with 55 experimental points is synthesized. A regression analysis and analysis of variance have been carried out. The influence of the factors on the friction coefficient is established using sections of the hyper-surface of the friction coefficient model with the hyper-planes.

Application of LRBs for Reduction of Wind-Induced Responses of Coupled Shear Wall Structures (전단벽 구조물의 풍응답 저감을 위한 LRB의 적용)

  • Park, Yong-Koo;Kim, Hyun-Su;Ko, Hyun;Kim, Min-Gyun;Lee, Dong-Guen
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.1
    • /
    • pp.47-56
    • /
    • 2011
  • In general, shear walls are employed as lateral resistance system. Most of shear wall structures require openings in shear walls and thus shear walls are linked by floor slabs or coupling beams resulting in the coupled shear wall structures. In this study, an LRB (lead rubber bearing) was introduced in the middle of the coupling beam of the coupled shear wall structures and the wind-induced response reduction effect of this system was investigated. In order to evaluate the control performance of the proposed method, 20- and 30-story building structures were used as example structures and boundary nonlinear time history analyses have been performed using artificial wind excitation. Japanese vibration evaluation criteria was employed to evaluate whether the proposed system could improve the serviceability of the tall coupled shear wall structures under wind excitation. Based on analytical results, it has been shown that the proposed method that connects shear walls with LRBs can improve the wind-induced response control effect.

On the Improved Method for the Mode Shapes of a Curved Beam in a Drum Brake

  • Lim, Byoung-Duk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.2E
    • /
    • pp.63-75
    • /
    • 1996
  • The squeal vibration of a drum is the major source of brake noise. In this system the binary flutter model of squeal vibration was employed for the drum brake of a passenger car. The vibration analysis of a drum brake was performed by using normal modes, which are obtained by variational method. An improved method for the estimation of shoe modes is proposed and the results are compared with the exact solutions. Numerical results for the coupled system of drum and shoes good agreement with the results of experimental model analysis and those obtained by FE analysis.

  • PDF