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On the Improved Method for the Mode Shapes of a

Curved Beam in a Drum Brake

Byoung Duk Lim*, Kyu Kang Jung* Ki Hyun Yoon*, Du Shik Shin**

ABSTRACT

The squeal vibration of a drum brake is the major source of brake noise. In this study the binary flutter model of squeal
vibration was cmployed for the drum brake of a passenger car. The vibration analysis of a drum brake was performed by
using normal modes, which are obtained by variational method. An improved method for the estimation of shoe modes is

proposed and the results are compared with the exact solutions. Numetical results for the coupled system of drum and
shoes show good agrecment with the results of experimental modal analysis and those obtained by FE analysis.

1. Introduction

Squeal vibration and noise of the automobile brake
system have attracted much attention as the other parts
become quicler. In case of the drum brake, friction
induced vibration of coupled system, so called binary
flutter, is considered to be the most prominent mechanism
underlying squeal phenomena instead of the classical
stick-slip model.

Stick-slip vibration occurs when the friction coeflicient
i is dependent on the relative velocity of the lining
matcrial with respect to the drum, cspecially when g-v
curve has negalive slope. If the damping of the system is
less than the slope of u-v curve multiplicd by the normal
force, which is usbally exerted by hydraulic or pneumatic
acluators, tolal damping effort given 1o 1he system
becomes negative, i.c., vibration energy is pumped in
rather than being removed.

While stick-slip occurs when the friction coeificient y
depends on the relative velocity, especially when g-v
curve has negative slope, binary flutler occurs even when
it is conslant over some velocily range. In this model the
lining material is considered as a soft elastic material
while the drum and backplate of the shoc are considered
to be rigid. Therefore the lining thickness is determined
by the relative displacement between drum and backplate,
and in turn the pressure, proportional to the thickness

vaniation, also depends on the radial displaccments of
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both structures. This change in the radial force results in
the friction force variation. If the drum and shocs are
modeled as a thin shell or its section, the dominant mode
of wibration is the flexural vibration and the circumference
of the neutral surface of each structure remains unchangod.
Therefore coupling of the radial and circumferential dis-
placement due to zero hoop strain and coupling of the
normal and friction force resull in a positive leedback
and cause the unstable responses generating high intensity
sound.

This model was first proposed by North [1] consideting
brake system as a lumped parameter system. Millner (2]
constdered the drum brake as a cylindrical sheill and the
shoes as curved bcams. Okamura and Nishiwaki [3]
developed an improved analytical model and studied the
effect of friction coefficient on the stability. Lang et al. [4]
developed an experimental modal analysis technique for
rotational modes and showed that the noisc generation is
mainly due (o binary flutter. They also have investigated
the complex modes resulting in the squeal vibration. Day
and Kim [5] used FEM for modal analyses of S-cam
drum brake.

In Okamura and Nishiwaki’s model the coupiing cffect
of drum vibration with the shoe through friction material
requires the information about the mode shapes of the
curved bar. In this study an improved eigenvalue approxe-
mation is proposed for the curved heam, which is essen-
tial in estimating the couplcd system’s mode shapes. The
calculated characteristic values showed good agreement
with the e¢xact solutions. Experimental verifications are
also given to support the usefulness of the proposed
method.
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1. Vibration of a cylindrical shell under the
action of the friction forces and pressure

Although a brake drum is an open cylindrical shell of
finitc length with an end cap, it can be assumed (o be one
with both cnds open. This assumption is based on Lhe
experimental results of modal analysis cspecially at the
lower order modes. Also shoes are considered as scclions
of cylindrical shel) with umform cross scction or curved

free-frce beams. Figure |

Fig 1. Geometry of drum brake system

shows simplified geometrical configuration of lhe brake
system. Here a shoe is named as the leading shoe and the
other as the trailing shoe. Sincc the hining malerial
between the drum and shoes has smaller elastic modulus
(usually much less than 1/10 of steel) compared to the
structure material, its thickness is assumed to be deter-
mined by the relative radial displacemeni between the
drum and shoes. Therefore the pressurc on the drum
excrted by the lining material can be represented as the
product of Young's modulus and the normal strain of the

lining material.

Ryp= % sy ) dé

!

R= 7 (“.-;s _“d)dﬂ

=

wherc #’s arc the radial displacements, the subseripls 4,
sp and ss denote the drum, leading shoc and trailing shoe
respectively, £; is the Young's modulus, and % is the
thickness of the lining material.

If the friction coefficient y is considered to be constant
regardless of the relative speed, then Lhe shear stress on
the contact surface is proportional 1o Lthe normal pressure

a8

The Journal of the Acoustical Society of Korca, Vol 15, No. 2E (1996}

Fop=p Ry
Fo=p Res

Since the forees considered arc in radial and circumfer-
cnlial directions, the axial force may be neglected and
only the radial and crcumfesential displacements are 1o
be taken mio accounl. Moreover since the thickness of
the drum is much less than the radius, the drum and
shoes arc modeied as thin cylindrical shell or its section
where the only considerable mode of vibration is the flex-
ural vibration. From the characleristics of the small
dellection of bending vibration it can be assumed (hal the
carcumference of the neutral surface of each structures
remains unchanged, which means the hoop strain of a
cylindrical shell is zero, 1.c.

Uy | ﬁvd

(Cp)([:‘—' 7‘— + " a¢ =0

where 24 and ¢4 represent the radial and circumierential

displaccments. Therefore due to the zero hoop strain con-
dition the radial displacement is coupled with the circum-
ferential displacement such that

Ua= T4 (1)

The radial and circumferential displacements of drum
need to be functions of ¢ with periodicity of 2 as Tollows ;

Uy = A,cosd + Aycos2¢+ -+ + Bysing + Bysin24 ¥ - (2)
B
vy = —A;sing - -’;2 sin 2¢ —+- + J’J.cosé—;2 cos 24+ -

The slth modal displacements can he represented as

ad)ls 5¢zs
s Vs (¢
A T
. D Dy as(t)

where @), = ~sin s¢fs, @, =cos sdfs, (s:integer) and g,
(£) and ¢,(#) are gencralized coordinates of the s-th

mode. Deformation energy of the drum 6], Uy, is

o? 1 led
= Lear= L[ My
U .[w.;..m. 264 2E, I LY

]2 Ix f’)zﬁ'd
=Ey =5 | T2 tutd

¢ 2qh .[0 ( a¢? al d¢
where £, and {4 are the Young's modulus and radius of
the drum and £, is the area moment of incrtia. The overall

kinelic energy, 7y, is
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lapA - -

Ta= ¢f 4 [h(ud2+vd’)2d¢;
2 Jo

Substituting the cxpressions of #; and using the ortho-

gonality of trigonometric functions kinetic and strain

energies can be represenled in terms of the generalized

coordinates g, (¢) and g, (£) as

{ A had | - -
Td=—‘f’—‘2 N (R S I CIRE P @
Ty
E,l, x
Ug=— 2 Jn 2 (1—-s9)? (qlsz +q232) (%)
2 5

Similarly the deformation and kinetic energies of shoe are
Y2 2 3
Tsp= I j‘ﬂ (usp + f}sp)z d(P

EI (7 Buy
for the leading shoe, while those of trailing shoe can be
oblained by replacing the integration interval with [ 8, 8,1

a8

lpd (7
Ty= Lz j‘dltuszs +vs2s)1 de

El (5

X
=0 I o )0
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Also the displacements are represented in terms of
generalized coordinates as follows.

(e,
[52]=| 9 |lap ©
| 2,

o, ]

[22]=1 20 |ta.t @
D

where @ ,(@) and & (#) are the mode shape functions
derived in the following section.
The gencralized foree corresponding to the ith gene-

ralized coordinate Q4 on the drum can be expressed as

T ORy duy | 0Fy vy

Q‘{':-L] de -Eqd; d¢ 0Qu Yo +
20 OR Qug | OF 004
-[ﬂl o0 0qgu af g4 6. ®

Also the generalized force on the shoes are

(T _ORy duy 3F, dvy

"i” IRy duy 3F, Ovg

FI 30 24,

do 8 G Vo (10)

s =

for the leading and trailing shoes respeclively.
Applying Euler-Lagrange equalion, the equations of
motion of the coupled system for the s-th mode is derived

as follows.
MX + KX=LAX + pLBX an
where
[ Mss 0 K 0
Msp K,
M= mq M= d1
] 0 Mgy | 0 Kdz
ray 0 apn an rby 0 by by
g= Ay Ay Gy B= 0 by by bu
SYM a3 as by by by by
L Ay by by by by
[ 4 (®)
X= Qsp(t)
qar (2
ant)

The detailed expressions of the cocfficienl malrices are

given in the appendix.

fl. Derivation of the mode shape functions.

In calculating the elements of the matrices in Eq. (11)
the mode shape functions of circularly curve beam is
required (sce the appendix). The equation of motion of
the circularly curved beam is

- 32 du
_— C— + —- =0 2
o BT+ ) k) (12)
1 i
where -— = tpo
K £l

Using separalion of variables and assuming harmonic

motion, u can be written as
u(g, y=@(f) - f )= (#) (4cos wi + Bsin w!)
above equation becomes an ordinary diffcrential equation

with constant coefficients as

e 3o w!
agt Tlagr TU-aI0=0 a3

whose solution has the form of @ (#)=¢**. Then the dif-

fereatial equation becomes a characleristic equation as

2

M= )=0 14)
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=¢a? (a*) 1). Gencral solution of @ (@) for the

2
w
where —
K 2

leading shoe, @, is given as

®,(9) = 4 cos, (¢—% )+ B sind, (- ’2-'-)

X

5 )

+C coshh(q#—-; Y+ P sinh Ay (g —

I the solutions are grouped as a symmetric part includ-
ing cosine and cosh functions and an anti-symmelric part
with remaining terms, from (he boundary conditions of a
free-frce beam (he characteristic values of each part can
be calculated by the characleristic equations given as

c]=lc)

. nY , ALY
[(A] —I)cos-é —(A +Dcosh -;—
Y

(1‘: —I)Sinl.)’ (A; +A])Sinhl_\

for symmetric parls and

(o))

for antisymmetric parl. This ywelds two independent

N ¥
—{(2? —1)sin é— (2 +l)sinh%
—(2} =a)cosA, Y (A} + Adcosha Y

equations with respecl lo A, and A; us

MY LY Y LY
'2 tan —é- = —% tanh '2"- for symmetric part (15)
NY MY Y Ny . .
and - ar _ . A antis .
and cot 5 3 coth 5 for antisymmetric parl)
{16

where A2 =2+ 1 and Ay =a’— |

Although these equations can be solved numerically, a
closed form approximation can make it easy 1o delermine
the matrix elements in closed forms. For a > [, A, and A,

can be approximated as

I 1
Zaz)—l—a a7

1| :d(l +

1 I

N=all+5 5 ) =a— .

s=ad 2a? ) 2a

For large a the Eq. (15) is approximately tan(, ¥/2) =
—tanh(x; ¥/2). Denoting m as the solution of this equation,
« m .
@ can be expressed as 2 =T + x where x is the per-
turbation variable. Substituting this into the Eq. (15) and
denoting m, as the nth solution of tanh m= —1lan m, and

2

letling X, =x + _4m,, , the right hand side of the chara-

cterislic equation is rearranged using these variables as

(m, + x,) tan(m, + x,)=0m, +x,) ~——
| —tan 2, * 1an x,;
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Since M, is very near to (4z — )n/4, (n =1, 2,---) the above

. L —1+1 n
equalion can be simplified as (m,, + x) |+ tan x
L4t 1 +tan x,
- an X,
=—{m,+x,)— - £
( » I + tan x,

Using the smallness of x, and ¥, the left hand side
becomes (7, + y,,) tanh{m, + »,) = (m, +¥,) and the
tight hand side becomes (m, + 2,,) (1 —2%,}=(m, + ¥,).

From this equalion the expression of x is given as

{ollows.
y? 2 { M
x==5 M, (? —|) 18)

Therefore Lhe symmetric mode shape function is given as

A7
RS ) ¥
w = 'hl ——— +_ - . . - =)
p=cosh; (¢ 2) el cos.m cos,(d 2)
2
19

2 72
> (m.,,+x+-:1mn-)

A T
=3 (m i A=
(20)

The Eq. (16) gives the same solutions as Eq. (20) except

(4n +n

that s, in this case is . Similarly the shape

funclions for anti-symmetric mode can be obtained as
g
o —ainhag- a0t e 4
= sinh Mg - 5 - — sink{g—— ).
p=sinh X{g-, ot A7 sindilg——)

a9

V. Numerical results and discussions

Before proceeding further the approximate sotution of
the characleristic equation for a curved beam proposed in
this study is compared with those given by Okamura ct
al. [3]. Table T

shows lhe results, where the exact values are obtaincd
through numerical analysis of the Eq. (15). As is seen in
the Table T. the improved method gives much better
results especialty in the lower modes which is of more sig-
nilicance in squeal vibration analysis.

Once the mode shape functions are determined, Eq.
(11) becomes another characleristic equation with respect
to the frequency @ where Lhe cigenvectors correspond to
the mode shapes in terms of generalized coordinates.
Table Tt shows modal frequencies calculated by the pres-
enl method and those measured by impact lests.

The first two frequencies coincide wilh the measured

ones though the 3rd and 4th components show discrep-
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Table 1. Solutions of eq.(7} by various methods

numerical analysis improved Okamura
of Eq.(1%) method et al. (3]
order 4 4 A A; 4 J A3
1 2.18 1.66 215 1.66 1.89 1.16
2 479 458 479 458 474 143
3 751 7.37 751 7.37 749 7.29
4 1023 10.13 10.23 10.13 10.22 10.07
5 12.96 12,88 12.96 12,88 12.95 12.85
Table 2. Modal trequencies calculated by the improved method,
and FEM, and from measurement,
[unit : Hz]
Order
Method 1 2 3 4
Calcutation 938.83 2645.75 3088.47 5070.56
Measurement 945.35 2648.80 3244.0 43945
FEM 1001.7 27830 34382 4756.0

ancy of about 5% and 15%. Also frequencies predicled
by finite element method shows similar but a little higher
than those mcasured. However, this result looks quite sat-
isfactory because dominant squeal frequencies lie in the
range between | and 6 kHz. Figures 2-5 show the mode
shapes corresponding to each modal frequency. For a
modal

——

J

1

|
|
|
i
f
1

Fig 2. Calculated mode shape pair at f=938Hz

Fig 3. Calculated mode shape pair at f=2646Hz

Fig 5. Calculated mode shape pair at f=5070Hz

frequency a pair of mode shapes are possible as shown in
these figures. Aclually these are a complex conjugate pair.
This kind of degeneracy is usuaily called doubfet modes
and has no preferred angular positions {5]. Fig. 6 shows 4
mode shapes of drum measured by impact test. Mode
shapes look similar to those calculated respectively.

While the drum is modelled as an open cylinder of
finite length and deformation of the hub is neglected in

this study, the hub motion becomes significant at higher
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(G

fig 6. Mcasured mode shapes al
(2) 945 Hz (b} 2649 Hz {c) 3244 117 {d) 4394 H2

order modes and a more elaborale mode! is required to
take this into account. This may be the major reason of
the discrepancy in the 4th order modal frequency (rom
those macsured and FE anlysis as shown in the Table 11.

Conciusions

Using an analytical dynamic model and nortmal mode
functions, a syslem of equations of motion of the drum
brake 1s derived. In order to gel a closed form expression
for the cocfficient matrix an improved method to obtain
the characteristic values is proposed for the vibration

analysis of a curved beam. Comparing with the numerical

The Journal of Lhe Acoustical Sociely of Kotea, Vol. 15. No. 2E {1946)

analysis results it is found that the present method gives
better results than those given by Okamura et al. [3). Fur-
thermore the caiculated natural frequencies showed good
agreement with measured oncs at the Isl and 2nd modes
butl some discrepancy of aboul 5 and 15% at the 3¢rd and
4th modes. Calculated mode shapes look almosl same as

thosc measured up to 4th made.
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Appendix.

LClements of the Coefficient Matrix in Eq.{11)

M X+KX=LAX +uLBX

. 0 K, 0
= Mgy = K‘#
M my K Ka
0 map 0
ay, 0 ay ay by O by by
A= dn Ay ay 0 by by by
SYM Gy a4y b:u bag bl’i bM
ay ba by by ay
Qs
X= @spin)
dain

(PO
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